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25 ABSTRACT

26 Background: The aim of this study was to utilize machine learning 

27 techniques to identify biomarkers associated with the diagnosis of 

28 bladder cancer, providing valuable insights into its early 

29 pathogenesis and exploring their potential as prognostic markers 

30 and therapeutic targets.

31 Methods: Initially, we conducted a comparative analysis of the 

32 genomes between bladder cancer samples, focusing on identifying 

33 the most significant differences between the cancer group and the 

34 normal group. Next, we employed machine learning techniques for 

35 feature selection and identified a key gene by integrating 

36 ferroptosis-related genes into our analysis. Moreover, we integrated 

37 transcriptome data, somatic mutation data, and clinical data to 

38 perform comprehensive analyses, including functional enrichment 

39 analysis, tumor mutation load analysis, immune infiltration analysis, 

40 and pan-cancer analysis. These analyses aimed to elucidate the 

41 pathological relevance of the candidate genes. Furthermore, we 

42 constructed a ceRNA network to identify the genes and regulatory 

43 pathways associated with these candidate genes.

44 Results: We initially conducted screening using the Weighted Gene 

45 Co-expression Network Analysis and machine learning techniques, 

46 resulting in the identification of six candidate genes: NR4A1, PAMR1, 

47 CFD, RAI2, ALG3, and HAAO. Subsequently, by integrating data 

48 from the FerrDB database, we identified NR4A1 as a gene associated 

49 with ferroptosis. Additionally, our analysis revealed a correlation 

50 between the expression of NR4A1 and tumor mutations as well as 

51 immune infiltration in patients with bladder cancer.

52 Conclusion: Our data strongly suggest that NR4A1 could serve as 

53 a crucial prognostic biomarker for bladder cancer and may also play 

54 a role in the development of various other cancers.
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58 1. Introduction

59 Bladder cancer (BC) is a significant health concern due to its 

60 potential impact on morbidity and mortality. The burden of this 

61 disease has remained relatively constant over time, posing a 

62 substantial impact on public health1. While the incidence of BC has 

63 shown a downward trend in recent years, the high recurrence and 

64 mortality rates associated with BC remain a significant challenge. 

65 The high recurrence rates make BC one of the most difficult and 

66 costly diseases to manage effectively2. To address the challenges 

67 posed by bladder cancer, including its high recurrence and mortality 

68 rates, is crucial for improving patient outcomes and reducing the 

69 burden of this disease.

70 In recent years, there has been a growing trend of applying 

71 machine learning and bio-inspired computing techniques to the field 

72 of medicine, specifically in the areas of diagnosis and prognosis. The 

73 utilization of machine learning and deep learning approaches in 

74 biology is not new, and the use of prediction methods in medicine 

75 has also been prevalent3,4.Machine learning methods offer powerful 

76 statistical techniques for developing classification tools. Unlike 

77 traditional approaches based solely on clinical knowledge of 

78 diseases and treatments, machine learning methods have the 

79 capability to select the best algorithm that minimizes classification 

80 errors. These methods are well-suited for handling large volumes of 

81 data and numerous prediction variables. They excel in identifying 

82 nonlinear relationships, including interactions or Boolean 

83 combinations of variables that may have been previously unknown5. 

84 By utilizing machine learning techniques, researchers can effectively 

85 analyze complex datasets and uncover hidden patterns or 

86 relationships that may contribute to disease diagnosis and 



87 prognosis6. These methods provide a valuable tool for improving 

88 accuracy and efficiency in medical decision-making by incorporating 

89 objective algorithms and data-driven approaches. The integration of 

90 machine learning methods in medicine holds great potential for 

91 enhancing patient care and advancing medical research.

92 Bioinformatics analysis technology plays a crucial role in the 

93 discovery of potential biomarkers and patterns in various research 

94 fields7. Among the many available analysis algorithms, the Weighted 

95 Gene Co-expression Network Analysis (WGCNA) algorithm has 

96 gained popularity among bioinformatics researchers due to its 

97 efficiency and accuracy. By leveraging the results of gene co-

98 expression network analysis, researchers have made significant 

99 advancements in the study of diseases8-10, drug research11,12, and 

100 species evolution13,14. This approach has been particularly useful in 

101 identifying key genes and pathways associated with diseases, 

102 including rheumatoid arthritis (RA). In a specific study conducted by 

103 Chen Yulan et al., the researchers downloaded a dataset related to 

104 rheumatoid arthritis from the GEO database. They obtained 

105 differential expression data from this dataset and applied the 

106 WGCNA method to elucidate differentially abundant genes. The next 

107 step involved identifying candidate biomarkers for RA using the 

108 LASSO regression model and SVM-RFE analysis15. These methods 

109 allowed the researchers to select a subset of genes that showed 

110 potential as biomarkers for rheumatoid arthritis.

111 The aim of this study was to identify potential biomarkers for the 

112 diagnosis of bladder cancer by obtaining potential biomarkers using 

113 bioinformatics and machine learning methods. In this study, the 

114 gene expression data obtained from TCGA were used as the research 

115 object, and the NR4A1 gene was obtained by WGCNA analysis and 

116 machine learning combined with ferroptosis related genes. A large 



117 number of studies have investigated the correlation between 

118 ferroptosis related genes and the occurrence, development and 

119 prognosis of BC. Certain genes have been identified as inhibitors of 

120 ferroptosis in BC cells and are known to promote cancer progression. 

121 Combined with transcriptome data, somatic mutation data, clinical 

122 data and other 32 cancer datasets in TCGA, enrichment analysis, 

123 tumor burden analysis, immune infiltration analysis and pan-cancer 

124 analysis were performed to uncover the pathological relevance of 

125 NR4A1. A CeRNA network was constructed to identify the regulatory 

126 pathways of NR4A1.

127

128 2. Materials and Methods

129 2.1 Datasets

130 In this study, we selected the bladder cancer dataset from the 

131 TCGA (The Cancer Genome Atlas) database as the primary dataset 

132 for identifying biomarkers. To further validate and examine the 

133 results of biomarker identification, we also utilized a combination of 

134 GEO (Gene Expression Omnibus) database. We utilized the 

135 TCGAbiolinks package in R to download and organize the gene 

136 expression data, clinical data, and somatic mutation data from the 

137 TCGA database.

138 The GEO13507 and GEO37815 datasets were extracted from the 

139 GEO database using the GEOquery package in the R. This package 

140 allowed us to download and organize these datasets for our study.

141 2.2 Identification DEGs of BLCA

142 We utilized the R package DeSeq2, which is a widely used tool in 

143 the field of bioinformatics for performing differential gene 

144 expression analysis. DeSeq2 provides robust statistical methods for 

145 identifying genes that show significant changes in expression levels 

146 between different experimental conditions. Specifically, we selected 



147 genes with |logFC| > 1 and adj.P.Val < 0.05 as differentially 

148 expressed genes. As a result, we identified a total of 4725 

149 differentially expressed genes, including 2024 up-regulated genes 

150 and 2701 down-regulated genes.

151 2.3 WGCNA Analysis

152 The WGCNA algorithm achieves the goal of quickly locking core 

153 genes by grouping modules and associating gene modules with 

154 phenotypes.

155 To construct a weighted co-expression network, a soft threshold 

156 (soft threshold powers) as the correlation coefficient needs to be 

157 determined. The soft threshold determines the strength of the 

158 correlation required for two genes to be considered co-expressed. In 

159 this study, we selected the power value when R2 (the squared 

160 correlation coefficient) was greater than 0.9 as the threshold, 

161 resulting in powers = 6.

162 The gene tree is constructed using hierarchical clustering based 

163 on gene neighbor-joining coefficients. Different colors are used to 

164 represent different clustering modules, while gray is used as the 

165 default color for genes that cannot be classified into any module. 

166 After constructing the WGCNA co-expression modules, these 

167 modules were linked to cancer classification metrics to explore the 

168 associations between gene synergies and cancer classification. Each 

169 row represents a different gene co-expression module, and the 

170 values represent the correlation coefficients. Positive and negative 

171 correlations are distinguished using red and green colors, 

172 respectively. The values in parentheses represent the corresponding 

173 significant p-values. Based on the analysis, the yellow module was 

174 identified as the module that is positively and strongly correlated 

175 with cancer.

176 2.4 Enrichment Analysis



177 To explore the underlying mechanism of genes derived from 

178 WGCNA analysis and differential analysis, we utilized the R 

179 packages clusterProfiler16 and org.Hs.eg.db. The clusterProfiler 

180 package provides a comprehensive set of functions for performing 

181 gene ontology (GO) analysis, which includes the investigation of 

182 gene molecular function (MF), biological process (BP), and cellular 

183 component (CC). Additionally, the package allows for the exploration 

184 of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. 

185 This analysis helps in unraveling the potential biological mechanisms 

186 and pathways underlying the studied phenotypes or conditions. A 

187 significance level of P < 0.05 was used to determine statistically 

188 significant KEGG pathways and GO terms for further investigation.

189 2.5 Machine Learning

190 2.5.1 SVM-RFECV

191 SVM-RFECV ranks the importance of each feature based on its 

192 impact on classification performance. This ranking is typically 

193 determined by evaluating the decrease in classification performance 

194 when a feature is removed from the model. By identifying the most 

195 influential features, researchers gain insights into the biological 

196 relevance of gene expression data and can better understand the 

197 underlying mechanisms and pathways associated with the studied 

198 phenotype or condition. And, SVM-RFECV incorporates cross-

199 validation in the feature selection process to enhance the robustness 

200 of feature selection. By evaluating performance across multiple 

201 iterations of cross-validation, SVM-RFECV provides a more reliable 

202 assessment of feature importance and selection. This approach helps 

203 to mitigate the potential impact of dataset variations, ensuring that 

204 the selected features are more likely to generalize well to unseen 

205 data and improving the overall reliability of the feature selection 

206 process.



207 2.5.2 XGBoost

208 XGBoost is a variant of the Gradient Boosting Machine (GBM), 

209 which is a machine learning classifier developed by Chen et al17. In 

210 cancer research, XGBoost has been shown to consistently 

211 outperform other machine learning algorithms such as Random 

212 Forest (RF), Support Vector Machine (SVM), logistic regression (LR), 

213 and k-nearest neighbor (KNN) algorithms in terms of accuracy and 

214 overall performance17,18. Studies have demonstrated that XGBoost 

215 can achieve higher accuracy and better predictive capabilities in 

216 cancer-related tasks. This advantage makes XGBoost a favorable 

217 choice for selecting potential biomarkers in cancer research19,20.

218 2.6 Survival Analysis

219 In clinical research, clinical outcomes can take various statistical 

220 forms, including continuous variables or discrete events such as 

221 death. Traditional statistical methods like t-tests are not suitable for 

222 analyzing clinical outcomes, and instead, survival analysis 

223 techniques are employed to assess the impact of specific factors on 

224 these outcomes.

225 Survival analysis encompasses several commonly used methods, 

226 including the Kaplan-Meier (KM) estimator, the log-rank test, and 

227 the COX proportional hazards model. The KM estimator is 

228 particularly useful for analyzing survival data. It generates a step 

229 function curve where each vertical drop represents the occurrence 

230 of one or more events. By plotting survival probabilities over time, 

231 the KM method allows for estimating survival probabilities beyond a 

232 certain point and observing changes in survival over time21.

233 To analyze the impact of the identified genes on clinical outcomes, 

234 we utilized two R packages: survival and Survminer. These packages 

235 provide a comprehensive set of tools for conducting survival analysis, 

236 including estimating survival probabilities, performing log-rank tests, 



237 and visualizing KM curves.

238 2.7 Receiver Operating Characteristic Curve

239 The ROC curve (Receiver Operating Characteristic curve) is a 

240 graphical representation used to evaluate the performance of binary 

241 classification methods. The x-axis of the ROC curve represents 1-

242 specificity, which is the false positive rate. The y-axis represents 

243 sensitivity, which is the true positive rate.

244 The ROC curve is constructed by varying the cut-off value or 

245 decision threshold of the binary classification method. By adjusting 

246 this threshold, we can observe how the sensitivity and specificity 

247 change. The curve illustrates the trade-off between correctly 

248 identifying positive cases (sensitivity) and incorrectly classifying 

249 negative cases (1-specificity).

250 The area under the ROC curve (AUC) is a measure of the overall 

251 performance of the classification model. AUC values range from 0.5 

252 to 1.0, where a value of 0.5 indicates a random classifier and a value 

253 of 1.0 indicates a perfect classifier. The closer the AUC is to 1, the 

254 higher the accuracy of the diagnostic model.

255 To plot the ROC curves in our study, we utilized the pROC 

256 package in the R language. This package provides functions and 

257 tools specifically designed for ROC analysis, allowing us to generate 

258 the ROC curves and calculate the corresponding AUC values. By 

259 utilizing the pROC package22, we were able to assess the diagnostic 

260 accuracy of our classification models based on the identified genes.

261 2.8 Immune infiltration analysis

262 Immune cell infiltration in tumors plays a crucial role in tumor 

263 progression and the effectiveness of anti-cancer therapies. To 

264 estimate immune infiltration, we employed three widely used 

265 bioinformatics analytical tools: xCell, CIBERSORT, and estimate. 

266 These tools provide estimation of cell type enrichment scores or 



267 relative levels of distinct cell types from gene expression data. xCell 

268 utilizes a gene signature-based approach to infer cell type 

269 abundance, CIBERSORT employs a deconvolution algorithm to 

270 estimate cell type proportions, and estimate calculates immune cell 

271 infiltration scores based on gene expression signatures. By 

272 leveraging these tools, we can obtain comprehensive insights into 

273 the immune cell composition within the tumor microenvironment 

274 and gain a better understanding of the tumor-immune interaction.

275

276 3 Results

277 3.1 Intersection of WGCNA and DGEs

278 A schematic flow diagram of the performed biomarker 

279 identification assay is shown in Fig 1.

280 In our study, we initially selected 4725 differentially expressed 

281 genes based on the criteria of |logFC| > 1 and adj.p.val < 0.05, as 

282 depicted in Fig 2A. Subsequently, we conducted WGCNA analysis 

283 and determined that the optimal threshold for constructing a scale-

284 free network was 6, as illustrated in Fig 2B. After determining the 

285 optimal threshold, we set the merging module threshold to 0.25 and 

286 generated the gene clustering diagram, as presented in Fig 2C. Next, 

287 we integrated the phenotypic data and calculated the correlation 

288 coefficients and module significance p-values between the 

289 quantitative module eigenvectors and the phenotypes. These results 

290 were visualized as a heatmap representing the module-trait 

291 correlation coefficients, as shown in Fig 2D. Based on a significance 

292 level of p < 0.05 and considering the correlation coefficient, we 

293 identified the yellow module as the key gene module most relevant 

294 to BLCA tumor tissue (p < 1e-200, corr = 0.76), as depicted in Fig 

295 2E. Finally, we obtained a set of 609 genes by intersecting the 

296 differentially expressed genes with the key genes from the yellow 



297 module, as displayed in Fig 2F.

298 3.2 Enrichment Analysis

299 We performed enrichment analysis of GO and KEGG pathways 

300 using the clusterProfiler package. To obtain significant GO terms 

301 and KEGG pathways, we applied a threshold of qvalueCutoff = 0.05 

302 and pvalueCutoff = 0.05, As shown in Fig 3A, we list the top ten 

303 important GO terms for DEGs in biological processes (BP), cellular 

304 components (CC), and molecular functions (MF). For example, in BP 

305 (Fig 3B), DEGs were significantly enriched in response to ameboidal-

306 type cell migration, wound healing, cell-substrate adhesion, muscle 

307 contraction, muscle system process, tissue migration, regulation of 

308 cell-substrate adhesion, epithelial cell migration, epithelium 

309 migration and muscle tissue development. The GO words of the MF 

310 group (Fig 3C), including extracellular matrix structural constituent, 

311 actin binding, extracellular matrix binding, DNA-binding 

312 transcription activator activity, RNA polymerase II-specific, DNA-

313 binding transcription activator activity, actin filament binding, 

314 glycosaminoglycan binding, integrin binding, muscle alpha-actinin 

315 binding and transmembrane receptor protein kinase activity, were 

316 significantly enriched by DEGs. In the CC group (Fig 3D), DEGs were 

317 mainly enriched in collagen-containing extracellular matrix, 

318 contractile fiber, myofibril, I band, sarcomere, Z disc, actin filament 

319 bundle, focal adhesion, cell-substrate junction and actomyosin.

320 Fig 3E-G shows the analysis of the KEGG pathway of DEGs. We 

321 observed that DEGs are mainly involved in Focal adhesion, MAPK 

322 signaling pathway, Proteoglycans in cancer, cGMP-PKG signaling 

323 pathway, Vascular smooth muscle contraction, Oxytocin signaling 

324 pathway, Cellular senescence, Human T-cell leukemia virus 1 

325 infection, Regulation of actin cytoskeleton and ECM-receptor 

326 interaction.



327 3.3 Feature Selection

328 We composed a new gene expression dataset using 609 features 

329 from WGCNA analysis and differential analysis, dividing the dataset 

330 into a training set and a test set, where 75% is the training set and 

331 25% is the testing set. We performed feature selection using SVM-

332 RFECV and XGBoost methods. Using these methods, we selected 28 

333 features with SVM-RFECV and 26 features with XGBoost. These 

334 features were chosen based on their importance in predicting the 

335 outcome of the cancer dataset. In Fig 4A-C, we present the confusion 

336 matrix and classification reports, including Precision, Recall, and F1 

337 score, for the SVM-RFECV model. Similarly, in Fig 4D-F, we show 

338 the confusion matrix and classification reports for the XGBoost 

339 model. Precision represents the ratio of correctly observed positive 

340 results to all observed positive results, while Recall is the ratio of 

341 correctly observed positive results to the total results observed in 

342 the desired category. F1 score is a performance metric that 

343 combines both Precision and Recall, providing a measure of overall 

344 model performance. Values greater than 0.5 indicate relatively good 

345 categorization, while values less than 0.5 suggest categorization 

346 failure. As shown in Fig 4, the models constructed for the cancer 

347 dataset all show successful classification results. The accuracy of the 

348 test dataset was calculated as 98.15% for the SVM-RFECV model 

349 and 100% for the XGBoost model. The accuracy is determined by 

350 comparing the predicted labels with the true labels in the test 

351 dataset. These specific accuracy values were obtained based on the 

352 model's performance in correctly classifying the test samples. 

353 Finally, we took the intersection of SVM-RFECV and XGBoost, as 

354 shown in Fig 4H, and finally identified six genes, NR4A1, PAMR1, 

355 CFD, RAI2, ALG3 and HAAO.

356 Based on the intersection results mentioned above, we further 



357 incorporated ferroptosis-related genes into the analysis. We 

358 obtained 567 genes related to ferroptosis from the FerrDB database. 

359 Among these genes, NR4A1 was identified as the most relevant 

360 ferroptosis-related gene in both the cancer group and the normal 

361 group, as depicted in Fig 4I.

362 3.4 Survival analysis and ROC analysis

363 We performed Kaplan-Meier survival analysis to assess the 

364 survival outcomes of patients based on different gene expression or 

365 high/low risk groups. To evaluate the impact of the identified NR4A1, 

366 we utilized the TCGAbiolinks package to download clinical data and 

367 employed the survminer package for survival analysis. The cut_point 

368 function was used to determine the optimal threshold for stratifying 

369 patients into high and low gene expression groups. Additionally, we 

370 obtained clinical data from the GEO database for further analysis, 

371 including TCGA-BLCA, GSE3507, and GSE37815 cohorts. Statistical 

372 analysis was performed to compare the overall survival (OS) rates 

373 between different expression groups23. At the same time, we 

374 downloaded the clinical data of GEO data from the GEO database 

375 and analyzed TCGA-BLCA, GSE3507 and GSE37815 respectively. 

376 Further analysis revealed a significant difference in the OS rates 

377 between the high and low expression groups in the TCGA-BLCA 

378 cohort (p = 0.0031), as shown in Fig 5A. Similarly, in the GSE31507 

379 cohort, there was a significant difference in the OS rates between 

380 the low and high expression groups (p = 0.00095), as depicted in Fig 

381 5B. Furthermore, in the GSE37815 cohort, the high expression 

382 group exhibited a significantly lower OS rate compared to the low 

383 expression group (p = 0.00021), as shown in Fig 5C.

384 We evaluated the diagnostic performance of the identified gene 

385 by analyzing their AUC values using ROC curve analysis. Firstly, for 

386 the TCGA dataset, we compared the expression of NR4A1 between 



387 the cancer group and the normal group, as shown in Fig 5D. 

388 Secondly, we assessed the sensitivity and specificity of these genes 

389 for diagnosing BLCA by generating ROC curves. The AUC value for 

390 NR4A1 was calculated as 0.9, indicating a high discriminatory power, 

391 as depicted in Fig 5E. Additionally, for the GEO datasets, we 

392 processed the batch effect using the sva (R/Bioconductor) package 

393 and merged the datasets. Subsequently, we calculated the inter-

394 group differences and generated ROC curves. The AUC value 

395 obtained for the GEO dataset was 0.697, as shown in Fig 5(F-G). The 

396 AUC value represents the area under the ROC curve and is a 

397 measure of the overall diagnostic performance of a test. AUC values 

398 range from 0 to 1, where a value of 1 indicates a perfect 

399 discriminatory power, and a value of 0.5 suggests no discriminatory 

400 power (equivalent to random chance). In our analysis, the AUC value 

401 of 0.9 for NR4A1 in the TCGA dataset indicates a high accuracy in 

402 distinguishing between BLCA and normal samples. Similarly, the 

403 AUC value of 0.697 for the GEO dataset suggests a moderate 

404 discriminatory power. These results suggest that NR4A1 has 

405 potential as a diagnostic biomarker for BLCA.

406 Finally, we performed a differential analysis of NR4A1 expression 

407 levels in TCGA-BLCA, comparing it with stage, N, M, T, age, and sex. 

408 As shown in Fig 6, we observed significant differences in stages, 

409 especially in stage I+II compared to stage III and VI respectively. 

410 The differences are striking. Furthermore, consistent with Fig 5D, 

411 we observed a significant decrease in the expression of NR4A1 in 

412 the cancer group.

413 3.5 CeRNA network analysis

414 In order to gain insights into the mechanism of “NR4A1” in BLCA, 

415 we employed themultiMiR” (R/Bioconductor) package to identify the 

416 miRNAs that potentially regulate NR4A1. multiMiR incorporates 



417 eight different predicted miRNA-target gene interaction databases 

418 (diana_microt, elmmo, microcosm, miranda, mirdb, pictar, pita, and 

419 targetscan), which greatly facilitates research on disease 

420 pathogenesis, diagnosis, and treatment based on the regulatory 

421 relationship between miRNAs and target genes, as depicted in 

422 Fig7(A-B).

423 Based on the results obtained, we focused on the miRNAs that 

424 were predicted to target NR4A1 in at least six out of the eight 

425 databases and utilized the mirnet website to predict the target genes 

426 of these miRNAs. Subsequently, we constructed a ceRNA (competing 

427 endogenous RNA) network diagram, as depicted in Fig7C. This 

428 network diagram provides a visual representation of the interactions 

429 between miRNAs, NR4A1, and other target genes, shedding light on 

430 the potential regulatory mechanisms involved in BLCA. This network 

431 provides novel insights into the post-transcriptional regulation of 

432 NR4A1 and may help to reveal potential therapeutic targets for 

433 BLCA. The results are shown in the Supplementary Table.

434 3.6 Tumor mutation burden estimation

435 Due to the association between tumor mutation burden (TMB) 

436 and the response to immunotherapy and prognosis of cancer, we 

437 utilized the maftools (R/Bioconductor) tool to analyze and visualize 

438 somatic mutation data in tissues with high and low expression of 

439 NR4A1. The results of this analysis are presented in Fig 8.

440 In Fig 8C, we performed a differential mutation analysis using 

441 Fisher’s exact test on all genes present in the maf files of the high 

442 expression and low expression groups. Our analysis revealed that 

443 genes such as RYR2, POLN, and CNTNAP2 exhibited significant 

444 differences in mutation frequency between the two groups.

445 3.7 Immune analysis

446 In this study, our specific objective was to investigate the 



447 potential association between NR4A1 expression and the infiltration 

448 levels of immune cells in bladder cancer. Understanding this 

449 association can provide valuable insights into the role of NR4A1 in 

450 modulating immune responses within the tumor microenvironment, 

451 potentially leading to the development of novel therapeutic 

452 strategies for bladder cancer treatment.

453 We utilized the xCell, cibersort and estimate (R/Bioconductor) to 

454 analyze the differences between immune cells with high and low 

455 expression levels of NR4A1. As shown in Fig9A, significant 

456 differences in StromaScore and MicroenvironmentScore were 

457 observed in immune cells including adipocytes, chondrocytes, 

458 endothelial cells, fibroblasts, HSCs, endothelial cells, 

459 megakaryocytes, mesangial cells, and Pericytes. The stromal score 

460 and immune score are shown in Fig 9B.

461 We employed cibersort to analyze and compare the differences 

462 in the abundance of 22 immune cell types between the NR4A1 high 

463 and low expression groups (as depicted in Fig 9C). The results 

464 indicated that Macrophages M1 and Mast cells activated exhibited 

465 higher levels in the NR4A1 high expression group compared to the 

466 low expression group, and these differences were found to be 

467 statistically significant (P<0.05). Additionally, T cells regulatory 

468 (Tregs) showed a significant increase in the NR4A1 low expression 

469 group. Fig 9D shows a heat map of high and low expression of NR4A1 

470 in immunoassays. Therefore, we suggest that the NR4A1 may play a 

471 crucial role in immune cell regulation in BC.

472 3.8 pan-cancer analysis

473 To further analyze NR4A1, we conducted an analysis of NR4A1 

474 expression in 23 different tumor types from the TCGA database, 

475 comparing cancer tissues with corresponding normal tissues. Our 

476 findings revealed that in 15 cancer types (BLCA, BRCA, GBM, HNSC, 



477 KICH, KIRC, KIRP, LIHC, LUAD, LUSC, PRAD, STAD, THCA and 

478 UCEC), the expression level of NR4A1 was significantly increased in 

479 the corresponding normal tissues (p<0.05), as depicted in the 

480 Fig10A.

481 Furthermore, when considering the overall significance, we 

482 observed that NR4A1 plays an important role in five cancers: ACC 

483 (p=0.02), CESC (p=0.0015), KICH (p=0.039), KIRC (p=0.0022), and 

484 TGCT (p=0.029). These results indicate significant differences in 

485 NR4A1 expression among different pathological stages, as shown in 

486 the Fig 10(B-F).

487 We also investigated the correlation between NR4A1 expression 

488 and the prognosis of patients with different cancer. Our analysis 

489 revealed significant associations between NR4A1 expression and 

490 the prognosis of 14 different cancer types. In the Fig 11, it is 

491 evident that high NR4A1 expression is associated with poor 

492 prognosis in patients with 9 types of cancer (ACC (p=0.026), COAD 

493 (p=0.025), DLBC (p=0.0092), ESCA (p=0.00068), KIRP (p=0.037), 

494 LUSC (p=0.041), MESO (p=0.018), OV (p=0.015), THCA 

495 (p=0.0027)). Conversely, low NR4A1 expression is associated with 

496 poor prognosis in patients with 5 types of cancer (BRCA (p=0.017), 

497 KICH (p=0.0059), KIRC (p=0.011), LIHC (p=0.0071), STAD 

498 (p=0.032)).

499 In the immune infiltration analysis, we observed significant 

500 findings in the BLCA dataset regarding B cells naive and T cells 

501 regulatory (Tregs). B cells naive showed a positive correlation, while 

502 Tregs showed a negative correlation. These results are depicted in 

503 the Fig 12A.

504 Regarding the immune infiltration of T cells regulatory (Tregs) 

505 and NR4A1 expression, we found a negative correlation in 18 cancer 

506 types (BRCA (p = 1.81e-10, r = -0.18), CESC (p = 3.75e-03, r = -



507 0.16), GBM (p = 0.02, r = -0.17), HNSC (p = 2.39e-03, r = -0.13), 

508 KIRC (p = 2.15e-05, r = -0.17), LGG (p = 1.32e-04, r = -0.16), LIHC 

509 (p = 4.69e-13, r = -0.34), LUAD (p = 4.14e-06, r = -0.19), LUSC (p 

510 = 4.13e-03, r = -0.12), MESO (p = 3.59e-03, r = -0.31), OV (p = 

511 6.42e-04, r = -0.16), PCPG (p = 9.87e-05, r = -0.28), PRAD (p = 

512 2.73e-08, r = -0.23), SARC (p = 0.01, r = -0.15), THCA (p = 7.70e-6, 

513 r = -0.33), THYM (p = 2.71e-03, r = -0.27), and UCEC (p = 8.09e-06, 

514 r = -0.18)). However, in COAD (p = 0.04, r = 0.09), a positive 

515 correlation was observed. These correlations are also depicted in the 

516 Fig 12(B-S).

517 To further investigate immune infiltration, we conducted 

518 separate analyses in 32 other cancer datasets. In 17 cancers (BRCA 

519 (p = 3.69e-11, r = 0.19), CESC (p = 3.25e-06, r = 0.26), ESCA (p = 

520 4.36e-04, r = 0.25), GBM (p = 3.86e-08, r = 0.40), HNSC (p = 0.03, 

521 r = 0.09), KICH (p = 1.99e-03, r = 0.32), KIRC (p = 8.23e-14, r = 

522 0.30), KIRP (p = 1.52e-10, r = 0.35), MESO (p = 1.61e-04, r = 0.39), 

523 OV (p = 2.33e-04, r = 0.18), PRAD (p = 1.29e-05, r = 0.18), READ (p 

524 = 0.01, r = 0.19), SARC (p = 3.03e-03, r = 0.18), STAD (p = 1.06e-

525 03, r = 0.15), TGCT (p = 4.11e-04, r = 0.28), THYM (p = 5.82e-03, r 

526 = 0.25), and UCEC (p = 5.57e-07, r = 0.20)), we found a positive 

527 correlation between immune infiltration of B cells naive and NR4A1 

528 expression. Conversely, in LAML (p = 0.02, r = -0.19), a negative 

529 correlation was observed. These correlations are shown in the Fig 

530 13.

531

532 4. Discussion

533 NR4A1, also known as TR3, Nur77, or NGF-IB, is a member of 

534 the NR subfamily 4 (NR4A) receptor and belongs to the 

535 steroid/thyroid hormone receptor superfamily. It functions as a 

536 transcription factor and is considered an early response gene that 



537 can be induced by various stimuli, such as serum, inflammatory 

538 factors, growth factors, and stress, in different cell types and organs. 

539 NR4A1 plays a crucial role in regulating diverse biological processes, 

540 including cell growth, apoptosis, and metastasis. The expression and 

541 function of NR4A1 have been extensively studied in various cancers, 

542 including melanoma, colorectal cancer, breast cancer, and 

543 hepatocellular carcinoma. In these cancers, NR4A1 has been shown 

544 to play a significant role in tumor progression and metastasis. It 

545 regulates key cellular processes associated with cancer, such as cell 

546 proliferation, survival, angiogenesis, and immune evasion. 

547 Additionally, NR4A1 has been implicated in the regulation of 

548 metabolic processes in cancer cells, including glycolysis, fatty acid 

549 synthesis, and amino acid metabolism24,25. Chang26 isolated NR4A1 

550 from a human prostate lambda gt11 cDNA library. Then it is found 

551 in various tissues and cells, including cancer cells.

552 Identification of genes critical for bladder cancer diagnosis may 

553 not only improve our understanding of the mechanisms underlying 

554 bladder cancer progression, but also provide molecular targets for 

555 novel therapies and drugs. As a key gene, NR4A1 plays an important 

556 role in bladder cancer. The NR4A1-centered ceRNA network may 

557 provide important targets for future studies of NR4A1 in bladder 

558 cancer. In bladder cancer, NR4A1 may interact with other RNA 

559 molecules through the ceRNA network, thereby influencing the 

560 development and progression of the disease. By identifying lncRNAs 

561 and miRNAs that interact with NR4A1, we can gain insights into 

562 their functions and regulatory networks in bladder cancer, and 

563 explore novel therapeutic targets. These findings will contribute to 

564 the advancement of individualized treatment and precision medicine 

565 in the field of bladder cancer, offering patients more effective 

566 treatment options.



567 Our study demonstrated that NR4A1 expression was significantly 

568 lower in 15 cancer types compared to the normal group, including 

569 BC, based on the analysis high and low expression levels of NR4A1 

570 across 23 different cancers. However, the role of NR4A1 in cancer 

571 remains controversial.

572 Studies have demonstrated that NR4A1 can have both pro-tumor 

573 and tumor suppressor roles in cancer cells and tumors27. Knockdown 

574 of NR4A1 in cancer cells has been shown to inhibit cell growth, 

575 induce apoptosis, and reduce angiogenesis28,29. Conversely, NR4A1 

576 has also been considered a potent tumor suppressor due to its 

577 involvement in growth inhibition and induction of apoptosis30-33. 

578 Thus, NR4A1 has both tumor suppressor and oncogenic roles in 

579 cancer development.

580 Overexpression of NR4A1 in breast cancer has been identified as 

581 a poor prognostic factor associated with decreased survival and 

582 increased metastasis34. miR-506 inhibits the proliferation and 

583 migration of colorectal cancer cells by downregulating the 

584 expression of NR4A135. In contrast, overexpression of NR4A1 has 

585 been shown to activate the Wnt/β-catenin signaling pathway, thereby 

586 promoting colon tumor growth, colony formation, and migration28. 

587 However, studies have also shown that overexpression of NR4A1 

588 inhibits the proliferation, invasion, and migration of endometrioid 

589 endometrial cancer cells, while promoting apoptosis36. 

590 Overexpression of NR4A1 inhibits the growth and invasiveness of 

591 triple-negative breast cancer cells37. These results suggest that 

592 NR4A1 expression may have different roles in different cancers. 

593 There is already growing evidence that this receptor can be targeted 

594 by anticancer drugs that induce cell death through NR4A1-

595 dependent and independent pathways.

596 Furthermore, we conducted a prognostic analysis of NR4A1 



597 expression using both TCGA-BLCA and GEO datasets, which 

598 revealed that high expression of NR4A1 in bladder cancer was 

599 associated with poor prognosis. Additionally, we observed 

600 correlations between NR4A1 expression and clinical parameters 

601 such as bladder cancer stage, T, N, M, age, and gender. We observed 

602 a significant association between NR4A1 expression and cancer 

603 stage. Among the other 32 cancers, high expression of NR4A1 in 

604 ACC, COAD, DLBC, ESCA, KIRP, LUSC, MESO, OV, and THCA was 

605 associated with poor prognosis. Conversely, low NR4A1 expression 

606 in BRCA, KICH, KIRC, LIHC, and STAD was associated with poor 

607 prognosis. Furthermore, NR4A1 expression was significantly higher 

608 in the normal group compared to the cancer group in BLCA, KIRP, 

609 LUSC, BRCA, KICH, KIRC, LIHC, and STAD. Additionally, we 

610 analyzed the pan-cancer data from TCGA and found significant 

611 differences in NR4A1 expression among different stages of ACC, 

612 CESC, KICH, KIRC, and TGCT. Therefore, based on the 

613 aforementioned analyses, we believe it would be valuable to conduct 

614 further molecular and cellular experiments to confirm the molecular 

615 function of NR4A1 in KICH, KIRC, and BLCA.

616 Previous studies have shown that immune cells play a dual role 

617 in tumors, with the ability to both promote and inhibit tumor 

618 progression38. Regulatory T cells (Tregs) play a crucial role in 

619 maintaining immune system homeostasis and immune tolerance, 

620 making them an important mechanism in the regulation of tumor 

621 immunity. Tregs are currently a research hotspot in this field, 

622 primarily due to their potential as therapeutic targets. They exert 

623 suppressive effects on the activation and differentiation of CD4 

624 helper T cells and CD8 cytotoxic T cells, leading to reduced reactivity 

625 to autoantigens and tumor-expressed antigens39-41. Our results 

626 analyzed the relationship between Nr4a1 expression and immune 



627 cell infiltration. Among the 19 cancers (BRCA, CESC, GBM, HNSC, 

628 KIRC, LGG, LIHC, LUAD, LUSC, MESO, OV, PCPG, PRAD, SARC, 

629 THCA, THYM, UCEC, and COAD), we observed a negative 

630 correlation between NR4A1 expression and regulatory T cells 

631 (Tregs).

632 Studies have demonstrated the co-localization and synergistic 

633 effects of tumor-infiltrating CD20+ B cells and CD8+ T cells in human 

634 cancers, highlighting the significance of T-cell-B cell interactions in 

635 promoting effective antitumor immunity. B cells can play a defensive 

636 role against tumors under specific conditions, primarily through the 

637 production of tumor-specific antibodies and presentation of tumor 

638 antigens. However, certain subsets of B cells and specific antibodies 

639 can also impede anti-tumor immunity and facilitate tumor growth42-

640 44. Among the 18 cancers (BRCA, CESC, ESCA, GBM, HNSC, KICH, 

641 KIRC, KIRP, MESO, OV, PRAD, READ, SARC, STAD, TGCT, THYM, 

642 UCEC, and LAML), we observed a negative correlation between 

643 NR4A1 expression and B cells navie.

644 The identification of NR4A1 as a key candidate gene suggests its 

645 potential involvement in the initiation and progression of bladder 

646 cancer, making it a promising molecular target for the diagnosis and 

647 treatment of the disease. While our study provides valuable evidence 

648 regarding the role of NR4A1 in tumorigenesis and immune 

649 regulation within the tumor microenvironment, it is important to 

650 acknowledge the limitations of our study. This is based on pure 

651 bioinformatics analysis and relies entirely on available open access 

652 database information and has not been experimentally validated. 

653 However, our bioinformatics analysis has provided initial insights 

654 into the involvement of NR4A1 in bladder cancer and pan-cancer 

655 mechanisms, highlighting its potential as a biomarker for further 

656 investigation. However, additional molecular biology experiments 



657 are required to validate its utility as a biomarker in pan-cancer 

658 studies. These studies help advance the development of NR4A1 as a 

659 valuable new target for cancer.

660

661 5. Conclusion

662 Firstly, we identified NR4A1 as a key gene using the TCGA-BLCA 

663 dataset. We then integrated transcriptome data, somatic mutation 

664 data, and clinical data to perform functional enrichment analysis, 

665 tumor mutation burden analysis, immune infiltration analysis, and 

666 pan-cancer analysis, aiming to elucidate the pathological relevance 

667 of this candidate gene. We constructed a ceRNA network to identify 

668 the genes and regulatory pathways associated with NR4A1 and other 

669 candidate genes. However, it is important to note that our findings 

670 are based on bioinformatics analysis and rely on data from existing 

671 databases. Therefore, experimental validation is required to confirm 

672 these results. Furthermore, machine learning encounters challenges 

673 such as high dimensionality and small sample sizes. Additionally, 

674 gene expression data often exhibit an imbalanced sample 

675 distribution, with a significantly higher number of diseased samples 

676 compared to normal samples. Addressing these issues constitutes an 

677 important research focus in the field of bioinformatics.

678

679 Data Availability

680 The TCGA datasets was obtained from TCGA database (GDC 

681 (cancer.gov)). the GSE13507 and GSE37815 datasets were obtained 

682 from GEO database (National Center for Biotechnology Information 

683 (nih.gov)).
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826 Figures

827

828 Fig 1. Schematic workflow of analyses.



829

830 Fig 2. Differential gene analysis and WGCNA. (A) Volcano plots for 

831 differential analysis, Red and green indicate DEGs with up-regulated 

832 and down-regulated genes, respectively. The x-axis represents logFC, 

833 and the y-axis represents log10 (adj.P.Val). (B) Pick soft thresholds 

834 based on near scale-free topology criteria. (C) Identification of 

835 modules significantly associated with phenotypic data in cancer and 

836 normal groups. (D) Hierarchical clustering dendrogram for module 

837 identification. (E) Yellow modules with high association with cancer 

838 phenotypes. (F) Intersection of DGEs and WGCNA.



839

840 Fig 3. Enrichment analysis. GO analysis (Biological Process, Cellular 

841 Component, and Molecular Function) of top 10 terms respectively. 

842 (A) lollipop chart. Circleplot as (B) BP. (C) MF. (D) CC. KEGG 

843 Analysis. (E-G) KEGG enrichment analysis of 607 genes, p<0.05 was 

844 considered to be statistically significant; BP: biological process; CC: 

845 cell component; MF: molecular function.



846

847 Fig 4. Machine learning. SVM-RFECV Analytics: (A) confusion 

848 matrix. (B) ROC curve. (C) classification reports. XGBoost Analytics: 

849 (D) confusion matrix. (E) classification reports. (F) ROC curve. (G) 

850 XGBoost feature importance graph. Genes with importance scores in 

851 the TCGA-BLCA gene expression prediction task and their specific 

852 scores. (H) Six key genes for SVM_RFECV and XGBoost. (I) key gene 

853 for machine and ferroptosis-related genes. 



854

855 Fig 5. Prognostic value of identified genes for BC in TCGA-BLCA. 

856 Kaplan-Meier survival curves for patients of BC with high and low 

857 indicated gene expression in TCGA-BLCA, GSE13507 and GSE87315.



858

859 Fig 6. Pathological analysis of TCGA-BLCA. (A) stage. (B) T. (C) N. 

860 (D) age. (E) M. (F) gender.



862

863 Fig 7. CeRNA network. (A, B) The ceRNA network’s target miRNAs 

864 were predicted based on the Diana_microt, elmmo, microcosm, 

865 mirdb, pictar, pita, targetscan and miranda databases. Purple 

866 indicates that the miRNA is present in at least six databases, green 

867 suggests that it is present in five databases, and brown indicates 

868 that it is present in four databases. (C) Network of ceRNA 

869 interactions. Brown represents miRNAs, and red represents 

870 lncRNAs.



872

873 Fig 8. The relationship between TMB and the expression of NR4A1. 

874 (A, B) The oncoplots of the mutation genes in for the high and low 

875 NR4A1 expression groups. (C) Comparison of low and high 

876 expression of NR4A1.



878

879 Fig 9. Immune infiltration analysis for the high and low NR4A1 

880 expression groups. (A-D) Violin plot showing differences in immune 

881 cell types between the high and low-risk groups in xCell, estimate 

882 and CIBERSORT. (A) xCell (B) estimate (C) CIBERSORT.



883

884 Fig 10. Pan-cancer analysis. (A) Expression levels of NR4A1 in 

885 different cancers compared with normal tissues. Red (green) 

886 indicates the cancer group (normal group). (B-F) Analysis of NR4A1 

887 expression levels in cancers with stage. Only p<0.05 was shown. 



888  

889 Fig 11. Survival curves in pan-cancer. (A) ACC, (B) COAD, (C) 

890 DLBC, (D) ESCA, (E) KIRP, (F) LUSC, (G) MESO, (H) OV, (I) THCA, 

891 (J) BRCA, (K) KICH, (L) KIRC, (M) LIHC, (N) STAD.



892

893 Fig 12. The correlation between NR4A1 expression and 22 kinds of 

894 immune cells, and the correlation between T cells regulatory (Tregs) 

895 and NR4A1 expression. (A) The correlation between NR4A1 

896 expression and 22 kinds of immune cells, (B) BRCA, (C) CESC, (D) 

897 GBM, (E) HNSC, (F) KIRC, (G) LGG, (H) LIHC, (I) LUAD, (J) LUSC, 

898 (K) MESO, (L) OV, (M) PCPG, (N) PRAD, (O) SARC, (P) THCA, (Q) 



899 THYM, (R) UCEC, (S) COAD.

900

901 Fig 13. The correlation between B cells naive and NR4A1 expression. 

902 (A) BRCA, (B) CESC, (C) ESCA, (D) GBM, (E) HNSC, (F) KICH, (G) 

903 KIRC, (H) KIRP, (I) MESO, (J) OV, (K) PRAD, (L) READ, (M) SARC, 



904 (N) STAD, (O) TGCT, (P) THYM, (Q) UCEC, (R) LAML.


