Abid M, Hakeem A, Shao YH, Liu Y, Zahoor R, Fan YH, Jiang SY, Ata-Ul-Karim ST, Tian ZW, Jiang D, Snider JL, Dai TB (2018) Seed osmopriming invokes stress memory against post-germinative drought stress in wheat (Triticum aestivum L.). Environ Exp Bot 145:12-20. doi:10.1016/j.envexpbot.2017.10.002
Abid M, Shao Y, Liu S, Wang F, Gao J, Jiang D, Tian Z, Dai T (2017) Pre-drought priming sustains grain development under post-anthesis drought stress by regulating the growth hormones in winter wheat (Triticum aestivum L.). Planta 246 (3):509-524. doi:10.1007/s00425-017-2698-4
An‐Ching T, Boyer JS (2002) Growth-induced water potentials and the growth of maize leaves. J Exp Bot 368 (368):489-503
Arraes FB, Beneventi MA, Lisei de Sa ME, Paixao JF, Albuquerque EV, Marin SR, Purgatto E, Nepomuceno AL, Grossi-de-Sa MF (2015) Implications of ethylene biosynthesis and signaling in soybean drought stress tolerance. BMC Plant Biol 15:213. doi:10.1186/s12870-015-0597-z
Ashraf M (2010) Inducing drought tolerance in plants: recent advances. Biotechnol Adv 28 (1):169-183. doi:10.1016/j.biotechadv.2009.11.005
Blum A (2017) Osmotic adjustment is a prime drought stress adaptive engine in support of plant production. Plant Cell Environ 40 (1):4-10. doi:10.1111/pce.12800
Bohm W (1979) Methods of studying root systems, Ecological studies, analysis and synthesis, vol 33. Ecological studies. Analysis and synthesis. Springer-Verlag, Berlin
Bouchabk O, Tardieu F, Simonneau T (2006) Leaf growth and turgor in growing cells of maize (Zea mays L.) respond to evaporative demand under moderate irrigation but not in water‐saturated soil. Plant, Cell Environ 29 (6):1138-1148
Brasileiro AC, Morgante CV, Araujo AC, Leal-Bertioli SC, Silva AK, Martins AC, Vinson CC, Santos CM, Bonfim O, Togawa RC, Saraiva MA, Bertioli DJ, Guimaraes PM (2015) Transcriptome Profiling of Wild Arachis from Water-Limited Environments Uncovers Drought Tolerance Candidate Genes. Plant Mol Biol Report 33 (6):1876-1892. doi:10.1007/s11105-015-0882-x
Castillo G, Martinez S (1997) Reversed-phase C18 high-performance liquid chromatography of gibberellins GA3 and GA1. J Chromatogr A 782 (1):137-139
Cheuk A, Ouellet F, Houde M (2020) The barley stripe mosaic virus expression system reveals the wheat C2H2 zinc finger protein TaZFP1B as a key regulator of drought tolerance. BMC Plant Biol 20 (1):144. doi:10.1186/s12870-020-02355-x
Daryanto S, Wang LX, Jacinthe PA (2017) Global synthesis of drought effects on cereal, legume, tuber and root crops production: A review. Agric Water Manage 179:18-33. doi:10.1016/j.agwat.2016.04.022
Divte P, Yadav P, Jain PK, Paul S, Singh B (2019) Ethylene regulation of root growth and phytosiderophore biosynthesis determines iron deficiency tolerance in wheat (Triticum spp). Environ Exp Bot 162:1-13. doi:10.1016/j.envexpbot.2019.01.011
Dong Y, Wang C, Han X, Tang S, Liu S, Xia X, Yin W (2014) A novel bHLH transcription factor PebHLH35 from Populus euphratica confers drought tolerance through regulating stomatal development, photosynthesis and growth in Arabidopsis. Biochem Biophys Res Commun 450 (1):453-458. doi:10.1016/j.bbrc.2014.05.139
Egea I, Albaladejo I, Meco V, Morales B, Sevilla A, Bolarin MC, Flores FB (2018) The drought-tolerant Solanum pennellii regulates leaf water loss and induces genes involved in amino acid and ethylene/jasmonate metabolism under dehydration. Sci Rep 8 (1):2791. doi:10.1038/s41598-018-21187-2
Fahad S, Bajwa AA, Nazir U, Anjum SA, Farooq A, Zohaib A, Sadia S, Nasim W, Adkins S, Saud S, Ihsan MZ, Alharby H, Wu C, Wang D, Huang J (2017) Crop Production under Drought and Heat Stress: Plant Responses and Management Options. Front Plant Sci 8:1147. doi:10.3389/fpls.2017.01147
Fang Y, Du Y, Wang J, Wu A, Qiao S, Xu B, Zhang S, Siddique KHM, Chen Y (2017) Moderate Drought Stress Affected Root Growth and Grain Yield in Old, Modern and Newly Released Cultivars of Winter Wheat. Front Plant Sci 8:672. doi:10.3389/fpls.2017.00672
Fang Y, Liao K, Du H, Xu Y, Song H, Li X, Xiong L (2015) A stress-responsive NAC transcription factor SNAC3 confers heat and drought tolerance through modulation of reactive oxygen species in rice. J Exp Bot 66 (21):6803-6817. doi:10.1093/jxb/erv386
Fang Y, Xiong L (2015) General mechanisms of drought response and their application in drought resistance improvement in plants. Cell Mol Life Sci 72 (4):673-689. doi:10.1007/s00018-014-1767-0
Farooq M, Hussain M, Siddique KHM (2014) Drought Stress in Wheat during Flowering and Grain-filling Periods. Critical Reviews in Plant Sciences 33 (4):331-349. doi:10.1080/07352689.2014.875291
Galle A, Csiszar J, Secenji M, Guoth A, Cseuz L, Tari I, Gyorgyey J, Erdei L (2009) Glutathione transferase activity and expression patterns during grain filling in flag leaves of wheat genotypes differing in drought tolerance: Response to water deficit. J Plant Physiol 166 (17):1878-1891. doi:10.1016/j.jplph.2009.05.016
Golldack D, Li C, Mohan H, Probst N (2014) Tolerance to drought and salt stress in plants: Unraveling the signaling networks. Front Plant Sci 5:151. doi:10.3389/fpls.2014.00151
Guo M, Wang R, Wang J, Hua K, Wang Y, Liu X, Yao S (2014) ALT1, a Snf2 family chromatin remodeling ATPase, negatively regulates alkaline tolerance through enhanced defense against oxidative stress in rice. PLoS One 9 (12):e112515. doi:10.1371/journal.pone.0112515
Gupta A, Rico-Medina A, Cano-Delgado AI (2020) The physiology of plant responses to drought. Science 368 (6488):266-269. doi:10.1126/science.aaz7614
Hameed A, Bibi N, Akhter J, Iqbal N (2011) Differential changes in antioxidants, proteases, and lipid peroxidation in flag leaves of wheat genotypes under different levels of water deficit conditions. Plant Physiol Biochem 49 (2):178-185. doi:10.1016/j.plaphy.2010.11.009
Han SK, Sang Y, Rodrigues A, Biol F, Wu MF, Rodriguez PL, Wagner D (2012) The SWI2/SNF2 chromatin remodeling ATPase BRAHMA represses abscisic acid responses in the absence of the stress stimulus in Arabidopsis. Plant Cell 24 (12):4892-4906. doi:10.1105/tpc.112.105114
Harb A, Simpson C, Guo W, Govindan G, Kakani VG, Sunkar R (2020) The effect of drought on transcriptome and hormonal profiles in barley genotypes with contrasting drought tolerance. Front Plant Sci 11:618491. doi:10.3389/fpls.2020.618491
Huang Q, Wang Y, Li B, Chang J, Chen M, Li K, Yang G, He G (2015) TaNAC29, a NAC transcription factor from wheat, enhances salt and drought tolerance in transgenic Arabidopsis. BMC Plant Biol 15 (1):268. doi:10.1186/s12870-015-0644-9
Jisha KC, Vijayakumari K, Puthur JT (2013) Seed priming for abiotic stress tolerance: an overview. Acta Physiol Plant 35 (5):1381-1396. doi:10.1007/s11738-012-1186-5
Kamphorst SH, Amaral Júnior ATd, Lima VJd, Guimarães LJM, Schmitt KFM, Leite JT, Santos PHAD, Chaves MM, Mafra GS, Santos Junior DRd, Cruz CD, Campostrini E (2019) Can Genetic Progress for Drought Tolerance in Popcorn Be Achieved by Indirect Selection? Agronomy 9 (12):792. doi:10.3390/agronomy9120792
Katuwal KB, Schwartz B, Jespersen D (2020) Desiccation avoidance and drought tolerance strategies in bermudagrasses. Environ Exp Bot 171:103947. doi:ARTN 103947
10.1016/j.envexpbot.2019.103947
Kemal K (2015) Diverse roles of jasmonates and ethylene in abiotic stress tolerance. Trends Plant Sci 20 (4):219-229
Khan R, Zhou P, Ma X, Zhou L, Wu Y, Ullah Z, Wang S (2019) Transcriptome Profiling, Biochemical and Physiological Analyses Provide New Insights towards Drought Tolerance in Nicotiana tabacum L. Genes (Basel) 10 (12):27. doi:10.3390/genes10121041
Kinoshita T, Seki M (2014) Epigenetic memory for stress response and adaptation in plants. Plant Cell Physiol 55 (11):1859-1863. doi:10.1093/pcp/pcu125
Kolbert Z, Feigl G, Freschi L, Poor P (2019) Gasotransmitters in Action: Nitric Oxide-Ethylene Crosstalk during Plant Growth and Abiotic Stress Responses. Antioxidants (Basel) 8 (6):22. doi:10.3390/antiox8060167
Kumar M, Chauhan AS, Kumar M, Yusuf MA, Sanyal I, Chauhan PS (2019) Transcriptome Sequencing of Chickpea (Cicer arietinum L.) Genotypes for Identification of Drought-Responsive Genes Under Drought Stress Condition. Plant Mol Biol Rep 37 (3):186-203. doi:10.1007/s11105-019-01147-4
Lang DY, Fei PX, Cao GY, Jia XX, Zhang XH (2018) Silicon promotes seedling growth and alters endogenous IAA, GA3 and ABA concentrations in Glycyrrhiza uralensis under 100 mM NaCl stress. J Hortic Sci Biotechnol 94 (1):1-7
Larkunthod P, Nounjan N, Siangliw JL, Toojinda T, Sanitchon J, Jongdee B, Theerakulpisut P (2018) Physiological Responses under Drought Stress of Improved Drought-Tolerant Rice Lines and their Parents. Not Bot Horti Agrobot Cluj-Na 46 (2):679-687. doi:10.15835/nbha46211188
Li CS, Li JG, Tang YL, Wu XL, Wu C, Huang G, Zeng H (2016) Stand establishment, root development and yield of winter wheat as affected by tillage and straw mulch in the water deficit hilly region of southwestern China. J Integr Agric 15 (7):1480-1489. doi:10.1016/S2095-3119(15)61184-4
Li PF, Ma BL, Palta JA, Ding TT, Cheng ZG, Lv GC, Xiong YC (2021) Wheat breeding highlights drought tolerance while ignores the advantages of drought avoidance: A meta-analysis. Eur J Agron 122:12. doi:ARTN 126196
10.1016/j.eja.2020.126196
Li X, Liu F (2016) Drought stress memory and drought stress tolerance in plants: biochemical and molecular basis. In: Drought Stress Tolerance in Plants, Vol 1, vol Vol 1. Springer, Cham, pp 17-44
Li Z, Liu C, Zhang Y, Wang B, Ran Q, Zhang J (2019) The bHLH family member ZmPTF1 regulates drought tolerance in maize by promoting root development and abscisic acid synthesis. J Exp Bot 70 (19):5471-5486. doi:10.1093/jxb/erz307
Liang CZ, Liu Y, Li YY, Meng ZG, Yan R, Zhu T, Wang Y, Kang SJ, Abid MA, Malik W, Sun GQ, Guo SD, Zhang R (2017) Activation of ABA Receptors Gene GhPYL9-11A Is Positively Correlated with Cotton Drought Tolerance in Transgenic Arabidopsis. Frontiers in Plant Science 8:1453. doi:ARTN 1453
10.3389/fpls.2017.01453
Liang Z, Li X, Li D, Sun Y, Li Y, Qin L, Liu Z, Wang J, Li X, Hong Z (2018) CARK1 mediates ABA signaling by phosphorylation of ABA receptors. Cell Discov 4 (1):30
Liu F, Jensen CR, Andersen MN (2005) A review of drought adaptation in crop plants: changes in vegetative and reproductive physiology induced by ABA-based chemical signals. Aust J Agri Res 56 (11):1245
Liu F, Shahnazari A, Andersen MN, Jacobsen SE, Jensen CR (2006) Physiological responses of potato (Solanum tuberosum L.) to partial root-zone drying: ABA signalling, leaf gas exchange, and water use efficiency. J Exp Bot 57 (14):3727-3735. doi:10.1093/jxb/erl131
Liu SX, Qin F (2021) Genetic dissection of maize drought tolerance for trait improvement. Molecular Breeding 41 (2):1-13. doi:ARTN 8
10.1007/s11032-020-01194-w
Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33 (4):453-467. doi:10.1111/j.1365-3040.2009.02041.x
Moller IM, Jensen PE, Hansson A (2007) Oxidative modifications to cellular components in plants. Annual Review of Plant Biology 58 (1):459-481. doi:10.1146/annurev.arplant.58.032806.103946
Muscolo A, Junker A, Klukas C, Weigelt-Fischer K, Riewe D, Altmann T (2015) Phenotypic and metabolic responses to drought and salinity of four contrasting lentil accessions. J Exp Bot 66 (18):5467-5480. doi:10.1093/jxb/erv208
Nakashima K, Yamaguchi-Shinozaki K, Shinozaki K (2014) The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat. Front Plant Sci 5 (170):170
Nie J, Wen C, Xi L, Lv S, Zhao Q, Kou Y, Ma N, Zhao L, Zhou X (2018) The AP2/ERF transcription factor CmERF053 of chrysanthemum positively regulates shoot branching, lateral root, and drought tolerance. Plant Cell Rep 37 (7):1049-1060. doi:10.1007/s00299-018-2290-9
Pace J, Gardner C, Romay C, Ganapathysubramanian B, Lubberstedt T (2015) Genome-wide association analysis of seedling root development in maize (Zea mays L.). Bmc Genomics 16:47. doi:10.1186/s12864-015-1226-9
Parizotto AV, Ferro AP, Marchiosi R, Finger-Teixeira A, Bevilaqua JM, dos Santos WD, Seixas FAV, Ferrarese-Filho O (2020) Inhibition of Maize Caffeate 3-O-Methyltransferase by Nitecapone as a Possible Approach to Reduce Lignocellulosic Biomass Recalcitrance. Plant Mol Biol Rep 39 (1):179-191. doi:10.1007/s11105-020-01242-x
Pinheiro C, Chaves MM (2011) Photosynthesis and drought: can we make metabolic connections from available data? J Exp Bot 62 (3):869-882. doi:10.1093/jxb/erq340
Pouri K, Mardeh ASS, Sohrabi Y, Soltani A (2019) Crop Phenotyping for Wheat Yield and Yield Components against Drought Stress. Cereal Res Commun 47 (2):383-393. doi:10.1556/0806.47.2019.05
Quan RD, Hu SJ, Zhang ZL, Zhang HW, Zhang ZJ, Huang RF (2010) Overexpression of an ERF transcription factor TSRF1 improves rice drought tolerance. Plant Biotechnology Journal 8 (4):476-488. doi:10.1111/j.1467-7652.2009.00492.x
Ranjan A, Nigam D, Asif MH, Singh R, Ranjan S, Mantri S, Pandey N, Trivedi I, Rai KM, Jena SN, Koul B, Tuli R, Pathre UV, Sawant SV (2012) Genome wide expression profiling of two accession of G. herbaceum L. in response to drought. Bmc Genomics 13 (1):94. doi:10.1186/1471-2164-13-94
Ren X, Chen Z, Liu Y, Zhang H, Zhang M, Liu Q, Hong X, Zhu JK, Gong Z (2010) ABO3, a WRKY transcription factor, mediates plant responses to abscisic acid and drought tolerance in Arabidopsis. Plant J 63 (3):417-429. doi:10.1111/j.1365-313X.2010.04248.x
Rushton PJ, Somssich IE, Ringler P, Shen QJ (2010) WRKY transcription factors. Trends Plant Sci 15 (5):247-258. doi:10.1016/j.tplants.2010.02.006
Sadok W, Schoppach R (2019) Potential involvement of root auxins in drought tolerance by modulating nocturnal and daytime water use in wheat. Ann Bot 124 (6):969-978. doi:10.1093/aob/mcz023
Sadras VO, Richards RA (2014) Improvement of crop yield in dry environments: benchmarks, levels of organisation and the role of nitrogen. J Exp Bot 65 (8):1981-1995. doi:10.1093/jxb/eru061
Sairam R, Saxena D (2000) Oxidative stress and antioxidants in wheat genotypes: possible mechanism of water stress tolerance. J Agron Crop Sci 184 (1):55-61
Sanchez-Martin J, Heald J, Kingston-Smith A, Winters A, Rubiales D, Sanz M, Mur LA, Prats E (2015) A metabolomic study in oats (Avena sativa) highlights a drought tolerance mechanism based upon salicylate signalling pathways and the modulation of carbon, antioxidant and photo-oxidative metabolism. Plant Cell Environ 38 (7):1434-1452. doi:10.1111/pce.12501
Seo JS, Joo J, Kim MJ, Kim YK, Nahm BH, Song SI, Cheong JJ, Lee JS, Kim JK, Choi YD (2011) OsbHLH148, a basic helix-loop-helix protein, interacts with OsJAZ proteins in a jasmonate signaling pathway leading to drought tolerance in rice. Plant J 65 (6):907-921. doi:10.1111/j.1365-313X.2010.04477.x
Seo YJ, Park JB, Cho YJ, Jung C, Seo HS, Park SK, Nahm BH, Song JT (2010) Overexpression of the ethylene-responsive factor gene BrERF4 from Brassica rapa increases tolerance to salt and drought in Arabidopsis plants. Mol Cells 30 (3):271-277. doi:10.1007/s10059-010-0114-z
Shi X, Yu D, Warner E, Sun W, Petersen G, Gong Z, Lin H (2006) Cross-reference system for translating between genetic soil classification of China and soil taxonomy. Soil Sci Soc Am J 70 (1):78-83
Simova-Stoilova L, Demirevska K, Petrova T, Tsenov N, Feller U (2009) Antioxidative protection and proteolytic activity in tolerant and sensitive wheat (Triticum aestivum L.) varieties subjected to long-term field drought. Plant Growth Regul 58 (1):107-117. doi:10.1007/s10725-008-9356-6
Singh D, Singh CK, Taunk J, Tomar RS, Chaturvedi AK, Gaikwad K, Pal M (2017) Transcriptome analysis of lentil (Lens culinaris Medikus) in response to seedling drought stress. Bmc Genomics 18 (1):206. doi:10.1186/s12864-017-3596-7
Sun Y, You Y, Zhu G, Fubing LV, Dongmei LI, Chen H (2011) Effects of drought stress on activity of antioxidant enzymes and osmotic adjustment substances content in oncidium. Environ Earth Sci
Takagi H, Ishiga Y, Watanabe S, Konishi T, Egusa M, Akiyoshi N, Matsuura T, Mori IC, Hirayama T, Kaminaka H, Shimada H, Sakamoto A (2016) Allantoin, a stress-related purine metabolite, can activate jasmonate signaling in a MYC2-regulated and abscisic acid-dependent manner. J Exp Bot 67 (8):2519-2532. doi:10.1093/jxb/erw071
Tardieu F, Simonneau T, Muller B (2018) The Physiological Basis of Drought Tolerance in Crop Plants: A Scenario-Dependent Probabilistic Approach. Annu Rev Plant Biol 69:733-759. doi:10.1146/annurev-arplant-042817-040218
Tian Q, Chen F, Liu J, Zhang F, Mi G (2008) Inhibition of maize root growth by high nitrate supply is correlated with reduced IAA levels in roots. J Plant Physiol 165 (9):942-951. doi:10.1016/j.jplph.2007.02.011
Tombesi S, Nardini A, Frioni T, Soccolini M, Zadra C, Farinelli D, Poni S, Palliotti A (2015) Stomatal closure is induced by hydraulic signals and maintained by ABA in drought-stressed grapevine. Sci Rep 5:12449. doi:10.1038/srep12449
Van Elsas J (1995) Methods of soil analysis. Part 2—Microbiological and biochemical properties: RW Weaver, Scott Angle, Peter Bottomley, David Bezdicek, Scott Smith, Ali Tabatabai and Art Wollum (editors), Soil Science Society of America, number 5 in the Soil Science Society of America Book Series, 1994, hardcover, 1121 pp., US $65, ISBN 0-89118-810-X. Elsevier,
Vincent D, Lapierre C, Pollet B, Cornic G, Negroni L, Zivy M (2005) Water deficits affect caffeate O-methyltransferase, lignification, and related enzymes in maize leaves. A proteomic investigation. Plant Physiol 137 (3):949
Virlouvet L, Fromm M (2015) Physiological and transcriptional memory in guard cells during repetitive dehydration stress. New Phytol 205 (2):596-607. doi:10.1111/nph.13080
Wang C, Lu G, Hao Y, Guo H, Guo Y, Zhao J, Cheng H (2017a) ABP9, a maize bZIP transcription factor, enhances tolerance to salt and drought in transgenic cotton. Planta 246 (3):453-469. doi:10.1007/s00425-017-2704-x
Wang FB, Zhu H, Chen DH, Li ZJ, Peng RH, Yao QH (2016) A grape bHLH transcription factor gene, VvbHLH1, increases the accumulation of flavonoids and enhances salt and drought tolerance in transgenic Arabidopsis thaliana. Plant Cell Tissue and Organ Culture 125 (2):387-398. doi:10.1007/s11240-016-0953-1
Wang N, Guo T, Wang P, Sun X, Shao Y, Jia X, Liang B, Gong X, Ma F (2017b) MhYTP1 and MhYTP2 from Apple Confer Tolerance to Multiple Abiotic Stresses in Arabidopsis thaliana. Front Plant Sci 8:1367. doi:10.3389/fpls.2017.01367
Wang W, Wang L, Wang L, Tan M, Ogutu CO, Yin Z, Zhou J, Wang J, Wang L, Yan X (2021) Transcriptome analysis and molecular mechanism of linseed (Linum usitatissimum L.) drought tolerance under repeated drought using single-molecule long-read sequencing. Bmc Genomics 22 (1):109. doi:10.1186/s12864-021-07416-5
Wang X, Mao ZQ, Zhang J, Hemat M, Huang M, Cai J, Zhou Q, Dai TB, Jiang D (2019) Osmolyte accumulation plays important roles in the drought priming induced tolerance to post-anthesis drought stress in winter wheat (Triticum aestivum L.). Environ Exp Bot 166:10. doi:ARTN 103804
10.1016/j.envexpbot.2019.103804
Wei B, Hou K, Zhang HH, Wang XY, Wu W (2020) Integrating transcriptomics and metabolomics to studies key metabolism, pathways and candidate genes associated with drought-tolerance in Carthamus tinctorius L. Under drought stress. Ind Crop Prod 151:15. doi:ARTN 112465
10.1016/j.indcrop.2020.112465
Wei H, Lv X, Yang J, Chen B, Zhao W, Meng Y, Wang Y, Zhou Z, Oosterhuis DM (2016) Effects of potassium deficiency on antioxidant metabolism related to leaf senescence in cotton ( Gossypium hirsutum L.). Field Crops Research 191:139-149
Wu H, Fu B, Sun P, Xiao C, Liu JH (2016) A NAC Transcription Factor Represses Putrescine Biosynthesis and Affects Drought Tolerance. Plant Physiol 172 (3):1532-1547. doi:10.1104/pp.16.01096
Yang H, Zhang X, Chen B, Meng Y, Wang Y, Zhao W, Zhou Z (2017) Integrated Management Strategies Increase Cottonseed, Oil and Protein Production: The Key Role of Carbohydrate Metabolism. Front Plant Sci 8:48. doi:10.3389/fpls.2017.00048
Yang HK, Wu G, Mo P, Chen SH, Wang SY, Xiao Y, Ma HLA, Wen T, Guo X, Fan GQ (2020) The combined effects of maize straw mulch and no-tillage on grain yield and water and nitrogen use efficiency of dryland winter wheat (Triticum aestivum L.). Soil Tillage Res 197:104485. doi:ARTN 104485
10.1016/j.still.2019.104485
Yilmaz C, Iscan M (2014) Glutathione S-Transferase activities and glutathione levels in needles of drought stressed Pinus Brutia Ten. trees. Turk J Biochem 39 (2):238-243. doi:10.5505/tjb.2014.88319
Zhai Y, Zhang L, Xia C, Fu S, Zhao G, Jia J, Kong X (2016) The wheat transcription factor, TabHLH39, improves tolerance to multiple abiotic stressors in transgenic plants. Biochem Biophys Res Commun 473 (4):1321-1327. doi:10.1016/j.bbrc.2016.04.071
Zhang JY, Cruz DC, MARIA H., Torres-Jerez I, Kang Y, Allen SN, Huhman DV, Tang Y, Murray J, Sumner LW, Udvardi MK (2015) Global reprogramming of transcription and metabolism in Medicago truncatula during progressive drought and after rewatering. Plant Cell Environ 37 (11):2553-2576
Zhang Y, Zhao H, Zhou S, He Y, Luo Q, Zhang F, Qiu D, Feng J, Wei Q, Chen L, Chen M, Chang J, Yang G, He G (2018) Expression of TaGF14b, a 14-3-3 adaptor protein gene from wheat, enhances drought and salt tolerance in transgenic tobacco. Planta 248 (1):117-137. doi:10.1007/s00425-018-2887-9
Zhou QY, Tian AG, Zou HF, Xie ZM, Lei G, Huang J, Wang CM, Wang HW, Zhang JS, Chen SY (2008) Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants. Plant Biotechnol J 6 (5):486-503. doi:10.1111/j.1467-7652.2008.00336.x
Zhou Y, He ZH, Sui XX, Xia XC, Zhang XK, Zhang GS (2007) Genetic improvement of grain yield and associated traits in the Northern China winter wheat region from 1960 to 2000. Crop Science 47 (1):245-253. doi:10.2135/cropsci2006.03.0175
Zhu H, Zhou YY, Zhai H, He SZ, Zhao N, Liu QC (2019) Transcriptome profiling reveals insights into the molecular mechanism of drought tolerance in sweetpotato. J Integr Agric 18 (1):9-23. doi:10.1016/S2095-3119(18)61934-3