(1) Mohrholz, V.; Naumann, M.; Nausch, G.; Krüger, S.; Gräwe, U. Fresh Oxygen for the Baltic Sea — An Exceptional Saline Inflow after a Decade of Stagnation. Journal of Marine Systems 2015, 148, 152–166. https://doi.org/10.1016/j.jmarsys.2015.03.005.
(2) Conley, D. J.; Björck, S.; Bonsdorff, E.; Carstensen, J.; Destouni, G.; Gustafsson, B. G.; Hietanen, S.; Kortekaas, M.; Kuosa, H.; Markus Meier, H. E.; Müller-Karulis, B.; Nordberg, K.; Norkko, A.; Nürnberg, G.; Pitkänen, H.; Rabalais, N. N.; Rosenberg, R.; Savchuk, O. P.; Slomp, C. P.; Voss, M.; Wulff, F.; Zillén, L. Hypoxia-Related Processes in the Baltic Sea. Environ. Sci. Technol. 2009, 43 (10), 3412–3420. https://doi.org/10.1021/es802762a.
(3) Markus Meier, H. E. Modeling the Pathways and Ages of Inflowing Salt- and Freshwater in the Baltic Sea. Estuarine, Coastal and Shelf Science 2007, 74 (4), 610–627. https://doi.org/10.1016/j.ecss.2007.05.019.
(4) Franck, H.; Matthaus, W.; Sammler, R. Major Inflows of Saline Water into the Baltic Sea during the Present Century. Gerlands Beitraege Zur Geophysik 1987, 96 (6).
(5) Andersen, J. H.; Carstensen, J.; Conley, D. J.; Dromph, K.; Fleming-Lehtinen, V.; Gustafsson, B. G.; Josefson, A. B.; Norkko, A.; Villnäs, A.; Murray, C. Long-Term Temporal and Spatial Trends in Eutrophication Status of the Baltic Sea: Eutrophication in the Baltic Sea. Biol Rev 2017, 92 (1), 135–149. https://doi.org/10.1111/brv.12221.
(6) Meier, H. E. M.; Eilola, K.; Almroth-Rosell, E.; Schimanke, S.; Kniebusch, M.; Höglund, A.; Pemberton, P.; Liu, Y.; Väli, G.; Saraiva, S. Disentangling the Impact of Nutrient Load and Climate Changes on Baltic Sea Hypoxia and Eutrophication since 1850. Clim Dyn 2019, 53 (1–2), 1145–1166. https://doi.org/10.1007/s00382-018-4296-y.
(7) Carstensen, J.; Andersen, J. H.; Gustafsson, B. G.; Conley, D. J. Deoxygenation of the Baltic Sea during the Last Century. Proceedings of the National Academy of Sciences 2014, 111 (15), 5628–5633. https://doi.org/10.1073/pnas.1323156111.
(8) Qiao, J.; Zhang, H.; Steier, P.; Hain, K.; Hou, X.; Vartti, V.-P.; Henderson, G. M.; Eriksson, M.; Aldahan, A.; Possnert, G.; Golser, R. An Unknown Source of Reactor Radionuclides in the Baltic Sea Revealed by Multi-Isotope Fingerprints. Nat Commun 2021, 12 (1), 823. https://doi.org/10.1038/s41467-021-21059-w.
(9) Qiao, J.; Steier, P.; Nielsen, S.; Hou, X.; Roos, P.; Golser, R. Anthropogenic 236 U in Danish Seawater: Global Fallout versus Reprocessing Discharge. Environ. Sci. Technol. 2017, 51 (12), 6867–6876. https://doi.org/10.1021/acs.est.7b00504.
(10) Hou, X. L.; Dahlgaard, H.; Nielsen, S. P.; Kucera, J. Level and Origin of Iodine-129 in the Baltic Sea. Journal of Environmental Radioactivity 2002, 61 (3), 331–343. https://doi.org/10.1016/S0265-931X(01)00143-6.
(11) Qiao, J.; Andersson, K.; Nielsen, S. A 40-Year Marine Record of 137Cs and 99Tc Transported into the Danish Straits: Significance for Oceanic Tracer Studies. Chemosphere 2020, 244, 125595. https://doi.org/10.1016/j.chemosphere.2019.125595.
(12) Casacuberta, N.; Christl, M.; Lachner, J.; van der Loeff, M. R.; Masqué, P.; Synal, H.-A. A First Transect of 236U in the North Atlantic Ocean. Geochimica et Cosmochimica Acta 2014, 133, 34–46. https://doi.org/10.1016/j.gca.2014.02.012.
(13) Swanson, V. E.; Swanson, V. E. Geology and Geochemistry of Uranium in Marine Black Shales: A Review; US Government Printing Office Washington, DC, 1961.
(14) Hain, K.; Steier, P.; Froehlich, M. B.; Golser, R.; Hou, X.; Lachner, J.; Nomura, T.; Qiao, J.; Quinto, F.; Sakaguchi, A. 233U/236U Signature Allows to Distinguish Environmental Emissions of Civil Nuclear Industry from Weapons Fallout. Nat Commun 2020, 11 (1), 1275. https://doi.org/10.1038/s41467-020-15008-2.
(15) Dunk, R. M.; Mills, R. A.; Jenkins, W. J. A Reevaluation of the Oceanic Uranium Budget for the Holocene. Chemical Geology 2002, 190 (1–4), 45–67. https://doi.org/10.1016/S0009-2541(02)00110-9.
(16) Sakaguchi, A.; Kawai, K.; Steier, P.; Quinto, F.; Mino, K.; Tomita, J.; Hoshi, M.; Whitehead, N.; Yamamoto, M. First Results on 236U Levels in Global Fallout. Science of The Total Environment 2009, 407 (14), 4238–4242. https://doi.org/10.1016/j.scitotenv.2009.01.058.
(17) Christl, M.; Lachner, J.; Vockenhuber, C.; Lechtenfeld, O.; Stimac, I.; van der Loeff, M. R.; Synal, H.-A. A Depth Profile of Uranium-236 in the Atlantic Ocean. Geochimica et Cosmochimica Acta 2012, 77, 98–107. https://doi.org/10.1016/j.gca.2011.11.009.
(18) Winkler, S. R.; Steier, P.; Carilli, J. Bomb Fall-out 236U as a Global Oceanic Tracer Using an Annually Resolved Coral Core. Earth and Planetary Science Letters 2012, 359–360, 124–130. https://doi.org/10.1016/j.epsl.2012.10.004.
(19) Castrillejo, M.; Witbaard, R.; Casacuberta, N.; Richardson, C. A.; Dekker, R.; Synal, H.-A.; Christl, M. Unravelling 5 Decades of Anthropogenic 236U Discharge from Nuclear Reprocessing Plants. Science of The Total Environment 2020, 717, 137094. https://doi.org/10.1016/j.scitotenv.2020.137094.
(20) Casacuberta, N. First 236U Data from the Arctic Ocean and Use of 236U/238U and 129I/236U as a New Dual Tracer. Earth and Planetary Science Letters 2016, 8.
(21) Casacuberta, N.; Christl, M.; Vockenhuber, C.; Wefing, A.-M.; Wacker, L.; Masqué, P.; Synal, H.-A.; Rutgers van der Loeff, M. Tracing the Three Atlantic Branches Entering the Arctic Ocean With 129 I and 236 U. J. Geophys. Res. Oceans 2018, 123 (9), 6909–6921. https://doi.org/10.1029/2018JC014168.
(22) Wefing, A.-M.; Casacuberta, N.; Christl, M.; Gruber, N.; Smith, J. N. Circulation Timescales of Atlantic Waters in the Arctic Ocean Determined from Anthropogenic Radionuclides. Ocean Science Discussions 2020, 2020, 1–29. https://doi.org/10.5194/os-2020-82.
(23) Christl, M.; Casacuberta, N.; Vockenhuber, C.; Elsasser, C.; Bailly du Bois, P.; Herrmann, J.; Synal, H.-A. Reconstruction of the 236U Input Function for the Northeast Atlantic Ocean: Implications for 129I/236U and 236U/238U‐Based Tracer Ages. Journal of Geophysical Research 2015, 18.
(24) Qiao, J.; Hain, K.; Steier, P. First Dataset of 236U and 233U around the Greenland Coast: A 5-Year Snapshot (2012–2016). Chemosphere 2020, 257, 127185. https://doi.org/10.1016/j.chemosphere.2020.127185.
(25) Naegeli, R. E. Calculation of the Radionuclides in PWR Spent Fuel Samples for SFR Experiment Planning.; SAND2004-2757, 919122; 2004; pp SAND2004-2757, 919122. https://doi.org/10.2172/919122.
(26) HELCOM. HELCOM MORS Discharge database https://helcom.fi/%20baltic-sea-trends/data-maps/databases/ (accessed May 1, 2020).
(27) Nomura, T.; Sakaguchi, A.; Steier, P.; Eigl, R.; Yamakawa, A.; Watanabe, T.; Sasaki, K.; Watanabe, T.; Golser, R.; Takahashi, Y.; Yamano, H. Reconstruction of the Temporal Distribution of 236U/238U in the Northwest Pacific Ocean Using a Coral Core Sample from the Kuroshio Current Area. Marine Chemistry 2017, 190, 28–34. https://doi.org/10.1016/j.marchem.2016.12.008.
(28) Sakaguchi, A.; Nomura, T.; Steier, P.; Golser, R.; Sasaki, K.; Watanabe, T.; Nakakuki, T.; Takahashi, Y.; Yamano, H. Temporal and Vertical Distributions of Anthropogenic 236 U in the J Apan S Ea Using a Coral Core and Seawater Samples. J. Geophys. Res. Oceans 2016, 121 (1), 4–13. https://doi.org/10.1002/2015JC011109.
(29) Seeberg-Elverfeldt, J.; Schlüter, M.; Feseker, T.; Kölling, M. Rhizon Sampling of Porewaters near the Sediment-Water Interface of Aquatic Systems: Rhizon Porewater Sampling. Limnol. Oceanogr. Methods 2005, 3 (8), 361–371. https://doi.org/10.4319/lom.2005.3.361.
(30) Dellwig, O.; Wegwerth, A.; Schnetger, B.; Schulz, H.; Arz, H. W. Dissimilar Behaviors of the Geochemical Twins W and Mo in Hypoxic-Euxinic Marine Basins. Earth-Science Reviews 2019, 193, 1–23. https://doi.org/10.1016/j.earscirev.2019.03.017.
(31) Cline, J. Spectrophotometric Determination of Hydrogen Sulfide in Natural Waters. Limnology and Oceanography 1969, 14 (3).
(32) Qiao, J.; Hou, X.; Steier, P.; Nielsen, S.; Golser, R. Method for 236 U Determination in Seawater Using Flow Injection Extraction Chromatography and Accelerator Mass Spectrometry. Anal. Chem. 2015, 87 (14), 7411–7417. https://doi.org/10.1021/acs.analchem.5b01608.
(33) Lin, M.; Qiao, J.; Hou, X.; Golser, R.; Hain, K.; Steier, P. On the Quality Control for the Determination of Ultratrace-Level 236 U and 233 U in Environmental Samples by Accelerator Mass Spectrometry. Anal. Chem. 2021, acs.analchem.0c03623. https://doi.org/10.1021/acs.analchem.0c03623.
(34) Lee, S. H.; Povinec, P. P.; Wyse, E.; Hotchkis, M. A. C. Ultra-Low-Level Determination of 236U in IAEA Marine Reference Materials by ICPMS and AMS. Applied Radiation and Isotopes 2008, 66 (6–7), 823–828. https://doi.org/10.1016/j.apradiso.2008.02.020.
(35) Dellwig, O.; Schnetger, B.; Meyer, D.; Pollehne, F.; Häusler, K.; Arz, H. W. Impact of the Major Baltic Inflow in 2014 on Manganese Cycling in the Gotland Deep (Baltic Sea). Front. Mar. Sci. 2018, 5, 248. https://doi.org/10.3389/fmars.2018.00248.
(36) Häusler, K.; Dellwig, O.; Schnetger, B.; Feldens, P.; Leipe, T.; Moros, M.; Pollehne, F.; Schönke, M.; Wegwerth, A.; Arz, H. W. Massive Mn Carbonate Formation in the Landsort Deep (Baltic Sea): Hydrographic Conditions, Temporal Succession, and Mn Budget Calculations. Marine Geology 2018, 395, 260–270. https://doi.org/10.1016/j.margeo.2017.10.010.
(37) Moros, M.; Andersen, T. J.; Schulz-Bull, D.; Häusler, K.; Bunke, D.; Snowball, I.; Kotilainen, A.; Zillén, L.; Jensen, J. B.; Kabel, K.; Hand, I.; Leipe, T.; Lougheed, B. C.; Wagner, B.; Arz, H. W. Towards an Event Stratigraphy for Baltic Sea Sediments Deposited since AD 1900: Approaches and Challenges. Boreas 2017, 46 (1), 129–142. https://doi.org/10.1111/bor.12193.
(38) Brumsack, H.-J. The Trace Metal Content of Recent Organic Carbon-Rich Sediments: Implications for Cretaceous Black Shale Formation. Palaeogeography, Palaeoclimatology, Palaeoecology 2006, 232 (2–4), 344–361. https://doi.org/10.1016/j.palaeo.2005.05.011.
(39) Brüske, A.; Weyer, S.; Zhao, M.-Y.; Planavsky, N. J.; Wegwerth, A.; Neubert, N.; Dellwig, O.; Lau, K. V.; Lyons, T. W. Correlated Molybdenum and Uranium Isotope Signatures in Modern Anoxic Sediments: Implications for Their Use as Paleo-Redox Proxy. Geochimica et Cosmochimica Acta 2020, 270, 449–474. https://doi.org/10.1016/j.gca.2019.11.031.
(40) Langmuir, D. Uranium Solution-Mineral Equilibria at Low Temperatures with Applications to Sedimentary Ore Deposits. Geochimica et Cosmochimica Acta 1978, 42 (6), 547–569.
(41) Anderson, R. F.; Fleisher, M. Q.; LeHuray, A. P. Concentration, Oxidation State, and Particulate Flux of Uranium in the Black Sea. Geochimica et Cosmochimica Acta 1989, 53 (9), 2215–2224. https://doi.org/10.1016/0016-7037(89)90345-1.
(42) Barnes, C.; Cochran, J. Uranium Removal in Oceanic Sediments and the Oceanic U Balance. Earth and Planetary Science Letters 1990, 97 (1–2), 94–101.
(43) Klinkhammer, G. P.; Palmer, M. R. Uranium in the Oceans: Where It Goes and Why. Geochimica et Cosmochimica Acta 1991, 55 (7), 1799–1806. https://doi.org/10.1016/0016-7037(91)90024-Y.
(44) Lovley, D. R.; Phillips, E. J. P.; Gorby, Y. A.; Landa, E. R. Microbial Reduction of Uranium. Nature 1991, 350 (6317), 413–416. https://doi.org/10.1038/350413a0.
(45) Diaz, R. J.; Rosenberg, R. Spreading Dead Zones and Consequences for Marine Ecosystems. Science 2008, 321 (5891), 926–929. https://doi.org/10.1126/science.1156401.
(46) Rudnick, R. L.; Gao, S. Composition of the Continental Crust. In Treatise on Geochemistry; Elsevier, 2014; pp 1–51. https://doi.org/10.1016/B978-0-08-095975-7.00301-6.
(47) Steier, P.; Bichler, M.; Keith Fifield, L.; Golser, R.; Kutschera, W.; Priller, A.; Quinto, F.; Richter, S.; Srncik, M.; Terrasi, P.; Wacker, L.; Wallner, A.; Wallner, G.; Wilcken, K. M.; Maria Wild, E. Natural and Anthropogenic 236U in Environmental Samples. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2008, 266 (10), 2246–2250. https://doi.org/10.1016/j.nimb.2008.03.002.
(48) Alvarez, R. Managing the Uranium-233 Stockpile of the United States. Science & Global Security 2013, 21 (1), 53–69. https://doi.org/10.1080/08929882.2013.754311.
(49) Holloway, D. Research Note: Soviet Thermonuclear Development. International Security 1979, 4 (3), 192–197.
(50) Sources and Effects of Ionizing Radiation: United Nations Scientific Committee on the Effects of Atomic Radiation: UNSCEAR 2000 Report to the General Assembly, with Scientific Annexes; United Nations, Ed.; United Nations: New York, 2000.
(51) ICES. ICES Dataset on Oceanography https://ices.dk/data/dataset-collections/Pages/default.aspx (accessed May 1, 2020).
(52) Nielsen, S. P.; Lüning, M.; Ilus, E.; Outola, I.; Ikäheimonen, T.; Mattila, J.; Herrmann, J.; Kanisch, G.; Osvath, I. Baltic Sea: Radionuclides. In Encyclopedia of Inorganic Chemistry; King, R. B., Crabtree, R. H., Lukehart, C. M., Atwood, D. A., Scott, R. A., Eds.; John Wiley & Sons, Ltd: Chichester, UK, 2010; p ia760. https://doi.org/10.1002/0470862106.ia760.
(53) Christl, M.; Casacuberta, N.; Lachner, J.; Herrmann, J.; Synal, H.-A. Anthropogenic 236 U in the North Sea – A Closer Look into a Source Region. Environ. Sci. Technol. 2017, 51 (21), 12146–12153. https://doi.org/10.1021/acs.est.7b03168.
(54) IAEA. Inventory of Radioactive Waste Disposals at Sea. IAEA. Techdoc 1999, 1, 105–121.