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Abstract 21 

Schizophrenia (SCZ) is a severe psychiatric disorder caused by a complex interplay of genetic and 22 

environmental factors. Genome-wide association studies (GWASs) have identified numerous genetic 23 

variants associated with SCZ, yet genetic risk does not fully predict the disorder. Some individuals 24 

with a high genetic risk do not develop SCZ, whereas others with lower genetic risk do. This 25 

discrepancy suggests that non-genetic factors, potentially mediated by epigenetic modifications, 26 

play a role in SCZ etiology. Our study aimed to identify DNA methylation differences between SCZ 27 

patients and healthy controls within high and low genetic risk groups for SCZ, thereby reducing 28 

genetic risk heterogeneity and focusing on non-genetic influences. In our cohort of 491 SCZ patients 29 

and 765 controls, we selected those in the highest and lowest 30% of the SCZ polygenic risk score 30 

(SCZ-PRS) distribution. We then conducted targeted epigenome-wide association studies (EWASs) 31 

in these specific high and low genetic risk groups. This analysis identified two differentially 32 

methylated regions (DMRs) in the high genetic risk group, annotated to PF4 and ZNF727, and two 33 

DMRs in the low genetic risk group, mapped to EMILIN1 and HLA-DPB2 (comb-p seed p = 0.001, 34 

Šidák-corrected p < 0.05). Additionally, our findings suggest that a general case-control EWAS, 35 

adjusted for SCZ-PRS, might miss epigenetic markers unique to either the high or low genetic risk 36 

groups. In conclusion, performing EWASs on PRS-stratified groups can identify novel DNA 37 

methylation signatures associated with disease status. 38 
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Introduction 43 

Schizophrenia (SCZ) is a severe psychiatric disorder that is caused by a complex interplay between 44 

genetic and environmental risk factors1. Numerous genetic variants associated with SCZ have been 45 

identified through genome-wide association studies (GWASs)2,3, with the largest GWAS identifying 46 

342 significant single nucleotide polymorphisms (SNPs)3.  47 

Polygenic risk scores (PRS) help quantify the cumulative effect of these SNPs on SCZ risk, estimating 48 

an individual’s genetic liability towards the disease. To calculate the PRS for SCZ (SCZ-PRS), an 49 

individual’s sum of SCZ-associated alleles is weighted by their effect sizes from GWAS summary 50 

statistics4. Although SCZ-PRSs are not reliable predictors of a SCZ diagnosis, they can identify 51 

individuals with a higher risk: those in the highest decile of the SCZ-PRS distribution in the general 52 

U.S. healthcare system had up to 4.6-fold higher odds for SCZ compared to those in the lowest 53 

decile5. However, some individuals with a high genetic risk for SCZ (i.e. high SCZ-PRS) do not develop 54 

the disorder, while others with a low SCZ-PRS do develop it. This suggests that factors beyond 55 

genetics, such as environmental or developmental factors, play a role in SCZ etiology.  56 

SCZ risk factors may affect disease-relevant genes through epigenetic modifications, including DNA 57 

methylation. This modification involves the reversible addition of a methyl group to cytosine, typically 58 

at cytosine-phosphate-guanine dinucleotides (CpGs). Epigenome-wide association studies (EWASs), 59 

which investigate the association between DNA methylation patters and a phenotype of interest in 60 

a genome-wide fashion, have identified CpGs where DNA methylation is associated with SCZ6. Since 61 

EWASs can capture DNA methylation signals influenced by non-genetic factors, they can serve as an 62 

effective method to identify risk and protective loci beyond genetics.  63 

In our study, we aimed to identify DNA methylation differences between SCZ patients and healthy 64 

controls with high and low genetic risk for SCZ, employing a novel two-step approach in our EWAS. 65 

We first stratified individuals into groups with high (≥ 70th percentile) and low (≤ 30th percentile) 66 



SCZ-PRS, then conducted case-control EWASs within these high and low genetic risk groups. By 67 

performing our EWASs in groups homogenous in their genetic risk for SCZ, we sought to identify 68 

DNA methylation signatures reflecting non-genetic influences. This targeted approach is based on 69 

the hypothesis that different mechanisms, arising from the complex interplay of environmental and 70 

genetic factors, could underlie SCZ in these distinct genetic risk groups. Our results were compared 71 

with a general EWAS adjusted for SCZ-PRS, aiming at identifying SCZ-associated methylation signals 72 

that are not influenced by genetic risk in the wider population. We hypothesized that this broader 73 

approach might dilute methylation signals specific to the high and low genetic risk groups.  74 



Materials and Methods 75 

Sample 76 

Our study included SCZ patients and healthy controls from the Thematically Organised Psychosis 77 

(TOP)7 and Early Treatment and Intervention in Psychosis 2 (TIPS-2)8 clinical cohorts. Eligible SCZ 78 

patients were recruited from in- and outpatient psychiatric units in the Oslo and Stavanger regions 79 

in Norway. They were diagnosed with a schizophrenia spectrum disorder by trained clinicians using 80 

the Structural Clinical Interview for DSM-IV Axis I Disorders (SCID-I)9. Healthy controls were randomly 81 

recruited from the same geographic regions using the Statistics Norway Register. General inclusion 82 

criteria were: 1) absence of head trauma or physical illness potentially impacting central nervous 83 

system function, 2) IQ above 70, 3) aged 18-65, and 4) reported European ancestry. Dontrols with a 84 

personal or familial (first-degree relative) history of severe mental disorders were excluded. 85 

Participants provided written informed consent, and the data collection and analysis were approved 86 

by the Regional Committees for Medical Research Ethics South East Norway (#2009/2485), East 87 

Norway (#1.2007.2177), and West Norway (#S-0801b). 88 

Genotyping 89 

The DNA extraction and genotyping were performed as previously described10. DNA was extracted 90 

from blood and genotyped using the Human Omni Express-24 v.1.1 BeachChip array (Illumina Inc., 91 

San Diego, CA, USA). Quality control followed standard pipeline as described in Werner et al10, with 92 

genotype imputation performed using the MaCH11 software with European reference haplotypes 93 

from the 1000 Genome Project12. 94 

Polygenic risk score calculation 95 

SCZ-PRSs for each individual were calculated using the PRSice213 tool, with the latest SCZ GWAS 96 

meta-analysis by the Psychiatric Genomics Consortium (PGC) Schizophrenia Working Group 97 

(wave 3)3 as training dataset, and our TOP and TIPS-2 cohorts as test dataset. TOP cohort data was 98 



excluded from the PGC GWAS to avoid overlap, and the TIPS-2 cohort was not initially included in 99 

the GWAS. The training dataset consisted of 50 965 SCZ cases and 68 049 controls. The SCZ-PRSs 100 

were computed using the clumping and p thresholding method as described by Werner et al10. In 101 

brief, SNPs in the SCZ PGC wave 3 GWAS underwent quality control for minor allele frequency (MAF), 102 

imputation quality, and presence in at least half of the cohorts used in the meta-analysis. Variants in 103 

the major histocompatibility complex (MHC) region were omitted. The remaining SNPs were then 104 

clumped into independent regions. SCZ-PRSs in the test dataset were calculated using allelic dosage 105 

coefficients of independent variants with an association p ≤ 0.05 in the training dataset, which 106 

explained the most variance in liability in the SCZ PGC wave 3 meta-analysis3. Individuals with SCZ-107 

PRS beyond three standard deviations from the mean were excluded (1 patient and 2 controls).  108 

Adjustments for biological and technical factors were made using a linear regression model, creating 109 

residualized PRSs accounting for sex, age, genotyping batch, and the first two genetic principal (PCs; 110 

Supplementary Table S1). The normal distribution of the SCZ-PRSs was assessed by a Shapiro-Wilk 111 

Test.  112 

Stratification by genetic risk for SCZ  113 

We adopted a balanced approach between specificity and statistical power when defining individuals 114 

with low and high genetic risk, i.e. low and high SCZ-PRS, respectively. Prioritizing specificity by 115 

minimizing genetic risk variance within these groups led to decreased power and increased case-116 

control imbalance (Supplementary Table S2). Thus, individuals with a SCZ-PRS ≥ 70th percentile 117 

were classified as having a high genetic risk to SCZ, while those with a SCZ-PRS ≤ 30th percentile 118 

were defined as having a low genetic risk.  119 

Quantification of DNA methylation  120 

DNA isolated from blood was bisulfite-converted, and DNA methylation was measured on the 121 

Illumina Infinium MethylationEPIC array (Illumina Inc., San Diego, CA, USA) at Life and Brain (Bonn, 122 



Germany). The DNA methylation data were generated in three batches (1000 samples in batch 1, 283 123 

samples in batch 2, and 1082 samples in batch 3). 124 

DNA methylation pre-processing and quality control 125 

Quality control and pre-processing were performed for each batch separately using the following 126 

Bioconductor packages in R (version 4.0.0): minfi14, wateRmelon15, sva16, and ChAMP17. Probes were 127 

removed based on the following criteria: 1) detection p value >0.01 in more than 1% of the samples, 128 

2) bead count <3 in 5% of the samples, 3) mapped to the sex chromosomes, 4) known for cross-129 

hybridization or SNPS close to the target CpGs as reported by Zhou et al.18. The following samples 130 

were removed: 1) >1% of probes with a detection p value > 0.01, 2) mismatch between reported and 131 

predicted sex based on DNA methylation data, 3) mismatch between the 59 SNP genotypes obtained 132 

from the EPIC array and the genotypes obtained from SNP data for the same sample, and 4) a 133 

mismatch between reported and predicted ethnicity. Ethnicity was predicted from genetic data using 134 

a Random Forest classifier trained on populations of the 1000 genome project12. 5) Samples from 135 

individuals with a probability <0.9 of being European were excluded as well.  136 

DNA methylation was normalized using functional normalization19. Twenty PCs generated from DNA 137 

methylation data were used to normalize the first two batches and 25 PCs for the third batch. The 138 

ComBat20 method was used to correct for batch effects, accounting for array position, array ID, and 139 

scanner ID. A second ComBat20 correction was applied to correct for batch effects between the three 140 

batches after merging them.  To ensure the quality of the merged data, we confirmed that technical 141 

replicates among the typing batched (10 samples from each batch 1 and batch 2 were repeated in 142 

batch 3) clustered together in a principal component analysis (PCA).  143 

For this study, we extracted a subset of samples of 490 SCZ patients and 763 healthy controls from 144 

the merged quality-controlled DNA methylation data (batch 1: 551 samples; batch 2: 222 samples; 145 

batch 3: 400 samples). To visually control for any potential technical artifacts after selecting the subset 146 



of samples, PCA using the stats21 package were performed separately for the high and low SCZ-PRS 147 

groups, and the first five PCs colored for possible technical artifacts such as typing batch were plotted 148 

(Supplementary Figures S1 & S2). We did not observe an influence of technical artifacts on our 149 

selection.  150 

Estimation of cell-type proportions and smoking score 151 

The Houseman algorithm22 implemented by the estimateCellCounts2 function from the 152 

FlowSorted.Blood.Epic23 package was used to estimate the cell proportions of six specific cell types 153 

(CD4+T, CD8+T, natural killer cells, B-cells, monocytes, and neutrophils) from DNA methylation data. 154 

Smoking scores were also calculated from DNA methylation based on an algorithm by Elliott et al.24, 155 

using weights from an EWAS on tobacco smoking by Zeilinger et al.25  156 

After QC for methylation and PRS selection, our study sample comprised 216 patients with 157 

schizophrenia, 22 with schizophreniform disorder, 56 with schizoaffective disorder, and 458 healthy 158 

controls. A total of 728 individuals belonged to the TOP cohort, while 24 individuals were part of the 159 

TIPS-2 cohort.  160 

Data analysis 161 

All analyses were performed with R (version 4.1.2)21, unless otherwise stated. Plots were generated 162 

using the ggplot226 R package. To assess potential differences in age and sex between SCZ cases and 163 

controls within the high and low genetic risk groups, we performed Student’s t-tests and chi-squared 164 

tests, respectively. 165 

Differentially methylated positions (DMPs) 166 

DMPs associated with SCZ in both the high and low genetic risk groups were assessed using the 167 

limma27 package. By using linear regression models, beta values for each probe were regressed 168 

against case-control status. Age, sex, smoking score, estimated blood cell type proportions, and the 169 

first two genetic PCs were included as covariates. Quantile-quantile (Q-Q) plots were generated using 170 



the qqman28 package. DMPs were annotated using the 171 

IlluminaHumanMethylationEPICanno.ilm10b4.hg1929 package (version 0.6.0). P values were corrected 172 

for multiple testing within each genetic risk group using false-discovery rate (FDR) correction30. FDR-173 

corrected p values < 0.05 were considered significant. 174 

Differentially methylated regions (DMRs) 175 

We used the comb-p31 pipeline (Python version 3.8.8) to investigate DMRs associated with SCZ in 176 

both the high and low genetic risk groups using a seed p value of 0.001 and a window size of 750 177 

base pairs. Regions were considered associated if they contained at least four probes and had a 178 

Šidák32-corrected p < 0.05. DMRs were annotated using the 179 

IlluminaHumanMethylationEPICanno.ilm10b4.hg19 package29. The location of the DMRs was 180 

manually checked in the UCSC Genome Browser (https://genome.ucsc.edu/), genome assembly 181 

hg19. For each DMR, the mean difference in DNA methylation between SCZ cases and controls was 182 

calculated as ΔDMR methylation = MSCZ – MControls, where M is the average methylation across CpG 183 

sites for the SCZ cases and controls, respectively.  184 

The correlation of DNA methylation of the CpGs in the DMRs between whole blood and brain was 185 

assessed using the Blood–Brain Epigenetic Concordance (BECon)33 tool and the Blood Brain DNA 186 

Methylation Comparison Tool34. To compare the expression of genes annotated to the identified 187 

DMRs between whole blood and the brain, available data on the GTExPortal35 was accessed on May 188 

30th, 2023. 189 

SCZ-PRS-adjusted EWAS 190 

A case-control EWAS adjusting for SCZ-PRS was performed on a subset of 1209 individuals from our 191 

study. This subset represented nearly the entire cohort of our study and was selected due to its 192 

overlap with the sample employed in the SCZ EWAS conducted by Tesfaye et al6. The control group 193 



consisted of 763 individuals, with a mean age of 33.17 years (SD: 8.68) and 44.7% female. The SCZ 194 

group included 446 individuals with a mean age of 31.67 years (SD: 10.26) and 43.0% female. 195 

Initially, adding only SCZ-PRS into the DMP model led to inflated p values. To address this, we 196 

included additional covariates in our adjustments, aligning with those used in Tesfaye et al.'s SCZ 197 

EWAS6. The final model for our analysis was: beta values ~ case-control status + SCZ-PRS + sex + 198 

age + smoking score + cell type proportions + 3 PCs from DNA beta values + 5 control probe PCs 199 

+ 10 genotyping PCs + 10 surrogate variables (SVs). A Q-Q plot was generated, and DMPs and DMRs 200 

were identified as previously described. 201 

Association between SCZ-PRS and DNA methylation in the DMRs 202 

In the same individual subset from the SCZ-PRS adjusted EWAS, we tested the association between 203 

SCZ-PRS and DNAm at CpGs in DMRs using a modified linear model: beta values ~ SCZ-PRS, sex, 204 

age, smoking score, cell type proportions, 3 PCs, 5 control probe PCs, 10 genotyping PCs, and 10 205 

SVs. P values were adjusted for multiple testing across DMRs using FDR correction30. 206 

  207 



Results 208 

Selecting cases and controls with a high and low genetic risk for SCZ 209 

SCZ-PRS values were normally distributed (p = 0.178, Figure 1) and, SCZ cases had significantly 210 

higher SCZ-PRS values (mean = 0.325, SD = 0.906) than the controls (mean = -0.208, SD = 0.902; 211 

p < 0.001), confirming that SCZ patients have a higher genetic risk for developing SCZ when 212 

compared to healthy individuals, as expected. 213 

 Thirty percent of the individuals with the highest and lowest SCZ-PRS were assigned to the low 214 

(PRS ≤ -0.4998076) and high (PRS ≥ 0.4421547) genetic risk groups (Table 1). The difference in 215 

case/control ratios between the high (ratio = 1.28) and low (ratio = 0.28) genetic risk groups reflects 216 

the difference in SCZ-PRS distribution between cases and controls. A significant age difference 217 

between cases and controls was observed in the low genetic risk group, which we adjusted for in 218 

subsequent analyses. 219 

Table 1: Sample description of the selected individuals with a high and low genetic risk for 220 

schizophrenia. CTRL: control, SCZ: schizophrenia, SD: standard deviation.  221 

 high genetic risk low genetic risk 

 CTRL SCZ p value CTRL SCZ p value 

n 165 211  293 83  

mean age (SD) 32.96 (8.63) 32.22 (9.55) 0.437 33.50 (8.94) 29.61 (10.78) 0.003 

%females 44.8% 42.2% 0.679 44.4% 49.4% 0.492 

 222 

Differentially-methylated positions (DMPs) 223 

The Q-Q plots of our SCZ case-control EWASs showed no elevation (high genetic risk group: λ = 0.95; 224 

Figure 2A) and slight elevation (low genetic risk group: λ = 1.15; Figure 2C). No single CpG site was 225 

significantly associated with SCZ in either the high or low genetic risk groups after correction for 226 



multiple testing (Figure 2, Supplementary Tables S3 & S4). The top hit in the high genetic risk 227 

group was cg17587981 (p=9.02e-08, FDR-corrected p = 0.069), located in exon 1 of PSMC2 on 228 

chromosome 7, while the top hit in the low genetic risk group was cg22373683 (p = 4.29e-07, FDR-229 

corrected p = 0.326) in the SDHAP4 pseudogene on chromosome 3.  230 

Differentially-methylated regions (DMRs) 231 

We performed DMR analyses separately for the high and low genetic risk groups using comb-p31 232 

and identified two DMRs in each of the groups (Figure 2B and 2D, Table 2). The DMRs spanned 6 233 

to 15 probes and did not overlap between the high and low genetic risk groups, as expected. All 234 

DMRs were hypermethylated in the SCZ patients compared to the healthy controls, with a maximal 235 

observed difference in average beta values of 3.2% between the two groups (Table 2).  236 

 237 

Table 2: Significant differentially methylated regions (DMRs) associated with SCZ status. The DMR 238 

analysis was performed separately for the high and low genetic risk groups using comb-p31, and p values were 239 

corrected using the Šidák32 method. avg: average, bp: base pairs, CTRL: control, DNAm: DNA methylation, min: 240 

minimum, SCZ: schizophrenia 241 

    genomic location min p n 

probes 

length 

(bp) 

Šidák p Δ avg. DMR  

beta values 

(SCZ-CTRL) 

Genes in CpG 

island 

high genetic risk group        

    chr4:74847710-74848016 6.90e-12 7 306 1.23e-13 0.032 PF4 yes 

    chr7:63505638-63505871 2.00e-05 6 233 1.12e-06 0.016 ZNF727 no 

low genetic risk group 
       

    chr6:33084554-33085063 1.27e-07 14 509 2.20e-09 0.010 HLA-DPB2 yes 

    chr2:27301369-27301597 2.48e-05 8 228 7.12e-04 0.008 EMILIN1 no 

 242 



In the high genetic risk group, we identified a DMR spanning the 5’untranslated region (5’UTR)/exon 243 

1 region of the Platelet Factor 4 (PF4) gene on chromosome 4 (Šidák-corrected p = 1.23e-13) and a 244 

DMR mapped to the 5’UTR/exon 1 region of the Zinc Finger Protein 727 (ZNF727) gene on 245 

chromosome 7 (Šidák-corrected p = 1.12e-06).  246 

In the low genetic risk group, we identified one DMR mapped to the intron1/exon2/intron2 region 247 

of the pseudogene Major Histocompatibility Complex, Class II, DP Beta 2 (HLA-DPB2) on 248 

chromosome 6 (Šidák-corrected p = 2.20e-09) and one DMR in the 5’UTR/exon 1 region of the 249 

Elastin Microfibril Interfacer 1 (EMILIN1) gene on chromosome 2 (Šidák-corrected p =7.12e-04). For 250 

more details, see Table 2.  251 

To explore if the DNA methylation signatures we identified might reflect those in the brain, we 252 

examined the correlation of the DNA methylation of the CpGs in the DMRs between blood and brain 253 

using two different tools: Blood–Brain Epigenetic Concordance (BECon)33 and the Blood Brain DNA 254 

Methylation Comparison Tool34 (Supplementary Table S5). Data for all CpGs in the DMRs mapped 255 

to PF4, ZNF727, and HLA-DPB2 were available, with the DMR mapped to ZNF727 missing just one 256 

CpG in the BECon tool. For the DMR mapped to EMILIN1, only data for one out of four CpGs was 257 

available. We observed the highest overall correlation between blood and brain, averaged over all 258 

CpGs and across all measured brain regions, in the DMR mapped to PF4 (BECon mean rs = 0.562, 259 

DNA Methylation Comparison Tool mean r =0.642). Among the different brain regions, the correlation 260 

was highest in the prefrontal cortex, both in the BECon tool (mean rs = 0.692) and the DNA 261 

Methylation Comparison Tool (mean r = 0.662). The DMR mapped to ZNF727 showed a low to 262 

moderate average blood-brain correlation (BECon mean rs = 0.203, DNA Methylation Comparison 263 

Tool mean r = 0.569), similar to the DMR mapped to HLA-DPB2 (BECon mean rs = 0.304, DNA 264 

Methylation Comparison Tool r = 0.587). Finally, the only CpG measured in the EMILIN1 DMR 265 

exhibited low average correlation values of rs = -0.149 in the BECon tool and r = 0.116 in the DNA 266 



Methylation Comparison Tool. For details on the individual CpG sites and measured brain regions, 267 

see Supplementary Table S5.  268 

To gain deeper insights into the potential role of the identified genes in the brain, we assessed their 269 

expression in whole blood and 13 brain regions, using available data from the GTExPortal35 270 

(Supplementary Figure S3). In short, ZNF727 and EMILIN1 showed higher expression in all brain 271 

regions than in the whole blood, while the opposite pattern was observed for PF4. HLA-DPB2 272 

displayed more similar expression levels in blood and the brain compared to the other three genes, 273 

with particularly high gene expression in the cerebellum. 274 

We examined the association between SCZ-PRS and DNA methylation in all four DMRs, including 275 

PF4 and HLA-DPB2, which were previously associated with SCZ-PRS in post-mortem brain tissue36. 276 

In our analysis, only two CpGs in PF4 exhibited nominal significance, and several others approached 277 

significance, but none remained significant after adjusting for multiple tests. No associations were 278 

identified in the other DMRs (Supplementary Table S6). 279 

SCZ-PRS-adjusted EWAS 280 

Besides using a PRS-stratified approach, an alternative approach to focus on DNA methylation 281 

differences between SCZ cases and healthy controls that are not driven by common SCZ risk variants 282 

is to adjust the case-control EWAS by the SCZ-PRS. To test if adjusting for the SCZ-PRS results in the 283 

same findings as the PRS-stratified approach, we performed this analysis in 446 SCZ cases and 763 284 

healthy controls.  285 

The Q-Q plot showed no inflation (lambda = 1.02, Supplementary Figure S4), and our analysis 286 

identified a single significant DMR associated with the Programmed Cell Death 1 (PDCD1) gene 287 

(chr2:242802009-242802192). This DMR, comprising 5 CpG sites, exhibited a Šidák-corrected p value 288 

of 2.871e-05. Importantly, this DMR did not overlap with any DMRs found in the PRS-stratified 289 

analysis, either in the high or low PRS groups. Additionally, even with a more lenient seed p value 290 



threshold of 0.05 in the comb-p analysis (Supplementary Table S7), we were unable to detect the 291 

same DMRs.  292 



Discussion 293 

In our study, we adopted a novel approach by conducting SCZ case-control EWASs within groups 294 

stratified by their genetic risk for SCZ. Our goal was to identify DNA methylation differences between 295 

cases and controls in both high and low genetic risk groups. Reducing genetic risk heterogeneity 296 

within the groups allowed us to focus on DNA methylation differences potentially driven by non-297 

genetic factors. This strategy led to the identification of two DMRs in the high genetic risk group and 298 

two additional DMRs in the low genetic risk group. These findings are particularly noteworthy as 299 

these DMRs have not been previously reported in SCZ case-control EWASs, offering new insights 300 

into the epigenetic mechanisms involved in SCZ6,37. The DMRs did not overlap between the high and 301 

low genetic risk groups, suggesting distinct mechanisms in these two groups. 302 

In the high genetic risk group, one DMR annotated to the Platelet Factor 4 (PF4) gene, encoding a 303 

chemokine involved in immune processes and platelet aggregation, was hypermethylated in SCZ. 304 

This DMR, showing the greatest methylation difference (average beta value difference of 3.2%) 305 

among the four identified DMRs, is located in a CpG island within PF4’s 5’UTR/exon 1 region. 306 

Hypermethylation of CpG islands in promoters is typically associated with gene silencing38, aligning 307 

with previous findings of PF4 downregulation in the blood of SCZ patients39. 308 

DNA methylation in the PF4 DMR was highly correlated between blood and brain33,34, suggesting 309 

peripheral DNA methylation changes might mirror central epigenetic regulation. This is supported 310 

by Viana et al.36, who found a DMR in PF4, largely overlapping ours, associated with SCZ-PRS in post-311 

mortem brain tissues, with this association not attributed to direct genetic factors (discussed further 312 

below)36. Interestingly, the most recent SCZ GWAS did not find genetic variants near PF4 to be 313 

associated with SCZ3,40, indicating that DNA methylation differences in this region could indeed stem 314 

from non-genetic influences.  315 



In mouse models, PF4 administration has been shown to reduce T cell exhaustion, 316 

neuroinflammation, and improve cognitive function41,42, indicating its role in cognitive processes and 317 

potential involvement in SCZ-related cognitive impairment. While previous studies have associated 318 

DNA methylation in PF4 with SCZ-PRS and differential PF4 expression in SCZ36,39, our study is the first 319 

to report PF4 in a SCZ case-control EWAS. This finding contributes to the growing evidence of PF4's 320 

link to SCZ, possibly through DNA methylation as an epigenetic regulatory mechanism. 321 

The second DMR in the high genetic risk group is in the Zinc Finger Protein 727 (ZNF727) gene, which 322 

encodes a transcription factor not been previously associated with SCZ. No genetic variants near 323 

ZNF727 was close to reaching genome-wide significance in the latest SCZ GWAS3,40, supporting the 324 

involvement of non-genetic factors in the DMR. While ZNF727 is more highly expressed in the brain 325 

than in blood35, the CpGs in its DMR exhibit only low to medium correlation between blood and 326 

brain DNA methylation33,34, suggesting that these CpGs might not mirror those in the brain. Hence, 327 

the role of this DMR should be further investigated. 328 

In the low SCZ-PRS group, we identified a DMR mapped to the non-coding HLA-DPB2 pseudogene, 329 

whose exact role is yet to be fully understood. This DMR overlaps considerably with another DMR 330 

associated with SCZ-PRS in the prefrontal cortex36, indicating a potential role in the brain despite 331 

only low to moderate correlation of DNA methylation between blood and brain. However, in our 332 

study, we observed no association between DNA methylation in the HLA-DPB2 DMR and SCZ-PRS. 333 

While methylation changes in PF4 and HLA-DPB2 have been associated with SCZ-PRS in post-334 

mortem brain tissue36, our EWAS is the first to identify these genes after correction for multiple 335 

testing. A previous study with 353 SCZ cases and 322 controls also found an association of a CpG in 336 

HLA-DPB2 with SCZ, though only at a discovery threshold of p < 5e-543, giving further support to 337 

the connection between HLA-DPB2 and SCZ.  338 



Importantly, Viana et al.’s study on post-mortem brain DNA methylation and SCZ-PRS concluded 339 

that methylomic variation associated with SCZ-PRS is not a direct result of genetic influences, as 340 

indicated by the lack of enrichment in GWAS regions and independence from the genetic variants 341 

used in SCZ-PRS calculation36. This unexpected finding supports our hypothesis that the DNA 342 

methylation alterations in SCZ that we identified involve non-genetic factors. Considering ours and 343 

Viana et al.'s36 identification of associations between PF4 with SCZ-PRS, and the gene’s link to case-344 

control status in the high genetic risk group in our study, there could be a potential interaction effect. 345 

This interaction might not be driven by single SNPs, given their small effect sizes, but could be the 346 

result of an environmental impact amplified by a high genetic load. This observation warrants further 347 

investigation to better understand the complex relationship between DNA methylation, SCZ-PRS, 348 

and environmental factors. 349 

The second DMR identified in the low genetic risk group is in the Elastin Microfibril Interfacer 1 350 

(EMILIN1) gene, which encodes a structural extracellular matrix glycoprotein. EMILIN1 is more highly 351 

expressed in the brain than in blood. However, the only CpG site in EMILIN1’s DMR with available 352 

blood-brain DNA methylation correlation data showed a low correlation.  This limited correlation is 353 

inadequate for drawing conclusions about the implications of the blood-identified DMR for potential 354 

brain-related functions. 355 

The DNA methylation differences between SCZ cases and healthy controls in the high and low 356 

genetic risk groups could be driven by environmental factors. Known environmental risk factors for 357 

SCZ, such as cannabis use, childhood trauma, and birth complications, have been associated with 358 

altered DNA methylation44,45,46. We speculate that in the low genetic risk group, differential 359 

methylation might indicate the influence of environmental risk factors47 on SCZ patients, surpassing 360 

the effect of protective genetic variants. In contrast, in differential methylation in the high genetic 361 

risk group may reflect protective environmental factors like a nurturing family environment47, 362 



counterbalancing the effects of a heightened genetic risk for SCZ in healthy controls. It could also 363 

represent an interaction of adverse environmental factors with genetic risk variants in SCZ, together 364 

amplifying the disease risk48,49. Similar gene-environment interactions mediated by DNA methylation 365 

changes have been observed in the context of post-traumatic stress disorder and child abuse50. While 366 

environmental factors likely contribute to the observed DNA methylation differences, developmental 367 

factors51,52 and other factors, such as undetected rare SCZ risk variants or the potential for high 368 

genetic risk healthy individuals to develop SCZ later, should also be considered. 369 

With a similar goal of identifying disease-associated DNA methylation signatures specific for distinct 370 

genetic risk backgrounds, other studies on bipolar disorder and suicidal behavior compared DNA 371 

methylation between individuals with high and low PRSs53,54. Our novel approach, however, compares 372 

cases and controls within the same PRS group, more effectively capturing the influences of non-373 

genetic factors. Another strategy to reduce genetic risk variation involves studying families with 374 

known risk alleles, examining DNA methylation differences between affected and unaffected 375 

members carrying the risk allele. This method was used in a study on a family, in which multiple 376 

members were diagnosed with bipolar disorder and major depressive disorder55 Similarly, genetic 377 

risk variation was limited in another study by comparing DNA methylation between monozygotic 378 

twins discordant for schizophrenia and bipolar disorder56. However, such family- and twin-based 379 

studies often struggle with small sample sizes, limiting their ability to achieve epigenome-wide 380 

significance55,56. 381 

The SCZ-PRS-adjusted case-control EWAS failed to identify the DMRs that our SCZ-PRS-stratified 382 

approach found, even when using a less strict seed p-value threshold. While a SCZ-PRS-adjusted 383 

model can detect DNA methylation differences in a broader population, thus improving 384 

generalizability, it may dilute specific signals in groups with high or low genetic risk. This is especially 385 

true when distinct mechanisms are involved in these groups. Interestingly, although the SCZ-PRS-386 



adjusted model had a larger sample size and more overall statistical power, our SCZ-PRS-stratified 387 

approach identified more DMRs. This indicates that a targeted approach, focusing on individuals with 388 

similar genetic risk, is more effective in identifying DNA methylation markers that are particularly 389 

relevant to these distinct risk contexts.  390 

The findings of this study must be interpreted in the light of some limitations. First, the small sample 391 

size could have reduced our power to detect significant DMPs, though it was adequate to detect 392 

DMRs. Second, despite selecting individuals with the highest and lowest SCZ-PRSs, some variation 393 

in genetic risk liability persisted within the groups. However, we reduced the potential impact of this 394 

genetic variation on DNA methylation by adjusting for the first two genetic PCs. Third, even though 395 

we adjusted for age, we cannot guarantee that this correction eliminated its impact, especially in the 396 

low genetic risk group. Fourth, in case-control EWASs, there is potential for reversed causality, i.e., 397 

DNA methylation differences could either be causal or a result of the disease. Influences like 398 

pharmacotherapy and higher smoking rates in SCZ patients might impact DNA methylation. To 399 

address this, we adjusted our analyses using a DNA methylation-derived smoking score. Fifth, while 400 

SCZ is a psychiatric disorder, the impracticality of large-scale studies on live brain tissue let us use 401 

peripheral blood in our study. However, DNA methylation is cell-specific and epigenetic variation 402 

identified in the blood may not entirely reflect SCZ-relevant processes in the brain. Thus, we assessed 403 

the blood-brain correlation of each CpG in our DMRs individually. Finally, as our study was limited 404 

to participants of European ancestry due to limited numbers from other ethnic groups, our findings 405 

may not extend to other ethnicities. 406 

Our findings require validation in a larger, independent cohort, potentially identifying additional SCZ-407 

associated DNA methylation signatures. Experiments in cellular models could clarify how the DMRs 408 

impact gene transcription. Delving deeper into the DNA methylation differences we observed, it 409 

would be interesting to test whether environmental factors correlate with DNA methylation in the 410 



identified genes. Further research should extend to post-mortem brain studies, non-European 411 

populations, and other complex polygenic disorders, using a similar methodology.  412 

In conclusion, we identified differential DNA methylation associated with SCZ in individuals with high 413 

and low genetic risk for SCZ. By limiting genetic risk variability within these groups, we likely captured 414 

differences reflecting non-genetic influences. Our novel approach of performing EWASs within PRS-415 

stratified subgroups holds the potential to uncover disease-associated mechanisms not only for SCZ 416 

but also for other complex disorders. Such insights could deepen our understanding of the complex 417 

interplay between genetics and epigenetics in these conditions.   418 
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Figure Legends 565 

Figure 1: Overview of the study design and distribution of polygenic risk scores (PRSs) for 566 

schizophrenia (SCZ). The high and low genetic risk groups were defined as 30% of individuals with 567 

the highest and lowest SCZ-PRS, respectively. CTRL: control, EWAS: Epigenome-wide association 568 

study; DMR: differentially methylated region. 569 

Figure 2: Q-Q-plots (A,C) and Manhattan plots (B,D) for SCZ case-control EWASs in individuals 570 

with a high (A-B) and low (C-D) genetic risk for SCZ. -log10(p) values of each CpG site analyzed 571 

in case-control EWASs are reported on the y axis of the Manhattan plots, and the chromosomes are 572 

displayed on the x-axis. Differentially methylated regions are highlighted in blue.  573 
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Overview of the study design and distribution of polygenic risk scores (PRSs) for schizophrenia (SCZ).
The high and low genetic risk groups were de�ned as 30% of individuals with the highest and lowest SCZ-



PRS, respectively. CTRL: control, EWAS: Epigenome-wide association study; DMR: differentially
methylated region.

Figure 2

Q-Q-plots (A,C) and Manhattan plots (B,D) for SCZ case-control EWASs in individuals with a high (A-B)
and low (C-D) genetic risk for SCZ. -log10(p) values of each CpG site analyzed in case-control EWASs are
reported on the y axis of the Manhattan plots, and the chromosomes are displayed on the x-axis.
Differentially methylated regions are highlighted in blue.
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