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Abstract 

Despite considerable investigative efforts, the molecular mechanisms of postoperative 

delirium (POD) remain unresolved. The present investigation employs innovative 

methodologies for identifying potential primary and secondary metabolic markers of POD by 

analyzing serum metabolomic profiles utilizing the genetic algorithm and artificial neural 

networks. The primary metabolomic markers constitute a combination of metabolites that 

optimally distinguish between POD and non-POD groups of patients. Our analysis revealed 

L-lactic acid, inositol, and methylcysteine as the most salient primary markers, upon which 

the prediction accuracy of POD manifestation achieved AUC=99%. The secondary 

metabolomic markers represent metabolites that exhibit perturbed correlational patterns 

within the POD group. We identified 54 metabolites as the secondary markers of POD, 

incorporating neurotransmitters such as gamma-aminobutyric acid (GABA), serotonin. These 

findings imply a systemic disruption in metabolic processes in patients with POD. The 

deployment of gene network reconstruction techniques facilitated the postulation of 

hypotheses describing the role of established genomic POD markers in the molecular-genetic 

mechanisms of metabolic pathways dysregulation, involving the identified primary and 

secondary metabolomic markers. This study not only expands the understanding of POD 

pathogenesis but also introduces a novel technology for bioinformatic analysis of 

metabolomic data which could aid in uncovering potential primary and secondary markers in 

diverse research domains. 

 

Main 

Postoperative delirium (POD) is an acute state typified by cognition and attention 

deficits, disorganized thoughts, and disorientation, and is a frequent implication of assorted 

surgical procedures. Accumulating evidence associates POD with detrimental outcomes, such 

as prolonged hospital stays, augmented risk of complications, and escalated mortality rates1,2 

The propensity to POD manifestation escalates concurrently with age, as exemplified by a 

study reporting a 52% incidence of POD in cardiac surgery patients aged 60 years or older3. 

Risk factors for POD also include duration of the general anesthesia during surgery, 

neurotransmitter imbalance, neuroinflammation, metabolic syndrome, and others4,5. 

Metabolomics, by providing a snapshot of current biochemical activity, has been 

instrumental in diverse areas, such as profiling disease biomarkers6,7, monitoring disease 

progression8, elucidating xenobiotic metabolism9 and assessing drug toxicity10. This sets 

metabolomics apart from genomics and proteomics, which only offer potential scenarios of 

conditions development11. 

The levels of individual metabolites and the interplay between various metabolites 

can serve as indicators of physiological and pathological transformations within an 

organism12. The stratification of metabolic profiles into predefined classes based on 

individual metabolites or the sets of metabolites forms the crux of extant computational 
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biomarker discovery methods13. Such indicators referred to as primary biomarkers could 

significantly contribute to diagnostic and therapeutic strategies. 

Perturbations in the interplay among metabolites can offer insightful explanations of 

metabolic pathway dysfunction across an array of pathologies at a systemic level14. 

Metabolites that exhibit disrupted coordinated variability with their counterparts may be 

designated as secondary biomarkers15,16. These secondary biomarkers can not only expand 

our knowledge of the molecular mechanisms underlying physiological or pathophysiological 

processes, but also improve the predictive capacity of primary biomarkers17. 

Evaluation of metabolites levels and analysis of the correlations between metabolite 

concentrations is an applicable strategy to encapsulate the intricate relationships between 

metabolites18. Xiao et al. put forward a method designed to analyze a network of pairwise 

correlations among metabolites, premised on the Generalized Singular Value Decomposition 

(GSVD) algorithm, computed separately for POD and non-POD groups19. This approach 

enables discovery of clusters of metabolites predicated on mutual correlations, which differ 

between patient and control groups. Correlation analysis has also been exploited to establish 

the linkage between metabolites and phospholipid species, grounded on metabolomic and 

lipidomic data derived from Prostate Cancer Tissue20. 

In previous investigations, our team executed liquid chromatography with tandem 

mass spectrometry (LC-MS/MS) analysis of cerebrospinal fluid (CSF) and blood plasma 

samples collected from patients afflicted with high-grade glioma21. Consequently, we 

uncovered correlations between the metabolic profiles of blood plasma and CSF. 

The identification of interrelated metabolites from the analysis of metabolomic data is 

challenging due to the systemic control of metabolic processes. Generally, the pairwise 

correlations observed between metabolites are insignificant, even when the pairs are part of 

the same metabolic pathway22–24. This phenomenon could be attributed to the inherent 

stochasticity of metabolic processes25–28. Thus, explicit relationships between metabolites 

may be hidden, adding another layer of complexity to the analysis. 

Machine learning techniques, notably those encompassing artificial intelligence, are 

increasingly being harnessed for the analysis of high-dimensional omics data 29. 

Autoencoders (AEs) are a class of unsupervised neural network architectures devised for 

dimensionality reduction that can capture non-linear relationships30. Autoencoder structure 

typically contains an input layer of neurons, one or more hidden layers, and an output layer, 

replicating the input data. The goal of autoencoder is to minimize the reconstruction error 

between input and output data. 

Autoencoders have been demonstrated to adeptly manage the dimensionality 

reduction of original data by establishing non-linear relationships between features in the 

input data. Several variants of autoencoder architecture have been devised, such as 

convolutional, regularized, variational, sparse, stacked, deep, and generative31. In particular, 

variational autoencoder-derived latent representations of metabolomic data have been 

employed to analyze the groups of patients with conditions such as type 2 diabetes, acute 

myeloid leukemia, and schizophrenia32. Likewise, a supervised autoencoder (SAE) approach 

has been utilized for classification of clinical metabolomic data33. 

Denoising autoencoders are a subclass of neural network models that are a viable 

method for generating lower-dimensionality latent representations of salient 34. For instance, 

a deep learning-empowered denoising autoencoder has been deployed to gauge peak quality 

in liquid chromatography – high resolution mass spectrometry (LC−MS) data, as well as to 
forecast peaks by eliminating noise from the original peak profiles35. Similarly, a denoising 

autoencoder (SERDA) has been used to rectify errors in a large-scale metabolomic data 

generated via gas chromatography–mass spectrometry36. Furthermore, a normalization 

autoencoder (NormAE), a brainchild of nonlinear AEs and adversarial learning, has been 
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utilized to expunge batch effects in LC-MS-based metabolomics data37. Additionally, a 

number of methodologies for analyzing metabolic pathways and gene networks have been 

proposed to decode the molecular genetic mechanisms underlying observed metabolomic 

data13. The MetaboAnalyst 5.0 web tool, for instance, provides a comprehensive toolkit for 

the analysis of metabolomic data in the context of metabolic pathways38. 

Gene networks can confer valuable insights regarding genetic regulation of identified 

metabolic pathways, thereby forming the basis for integration of metabolomic and genomic 

data. Previously, we designed ANDSystem, a computer tool for reconstruction of gene 

networks, based on automated extraction of knowledge from scientific publications and 

factual databases39–42. ANDSystem has been applied to diverse problems, ranging from 

reconstruction of host-virus interaction gene networks43,44, gene prioritization45,46, to 

identification of new potential pharmacological targets47. Notably, utilizing ANDSystem to 

evaluate serum metabolomic profiles derived from COVID-19 patients, facilitated the 

identification of potential regulatory pathways and the key SARS-CoV-2 proteins implicated 

in disruption of metabolic processes during the course of infection48. 

In this study, we performed a metabolomic analysis of blood plasma acquired from 

two distinct patient groups who underwent cardiac surgery. One group developed 

postoperative delirium, whilst the other group did not exhibit this complication. Blood 

samples were procured prior to surgery, as we examined the data regarding preoperative 

metabolomic profiles. The metabolomic profiles derived from these samples revealed 

potential primary and secondary biomarkers. 

The primary biomarkers were identified as composite metabolites that markedly 

differentiated patients with postoperative delirium from those without this condition. The 

genetic algorithm was employed to discern these combinations and several groups consisting 

of 3 to 4 metabolites demonstrated comparable ability to distinguish patients exhibiting 

delirium from those who did not. Remarkably, two metabolites, L-lactic acid and Inositol, 

were present in nearly all combinations, with inclusion rates of 100% and 95%, respectively. 

Other metabolites, Methylcysteine and Adenine, were included in 40% and 12% of 

combinations, respectively. In total, 37 distinct metabolites were involved in the 

combinations. 

For identification of the secondary markers, we suggest a method predicated on 

detection of anomalies within data, utilizing a denoising autoencoder49. In general, utilizing 

autoencoders for anomaly detection has been substantiated by multiple studies49–53. The 

secondary markers represent metabolites, for which the denoising autoencoder trained on 

metabolomic profiles from non-POD patients failed to replicate metabolite concentrations for 

patients in the POD group. Such aberrations in the autoencoder's outputs can be attributed to 

the disruption of encoded intricate non-linear relationships between metabolites 

concentrations. These relationships allow to reduce dimensionality of metabolomic profile 

input within the neural network's hidden layer without substantial loss of prediction accuracy 

in the output. 

We herein suggest a novel approach to identify the secondary metabolomic 

biomarkers, deploying a digital patient model predicated on the use of denoising autoencoder 

applied to metabolomic data. The autoencoder detects metabolites whose interconnections 

with other metabolites, specific to the non-POD group, were disrupted in patients manifesting 

delirium. We identified 54 metabolites underscoring the systemic nature of metabolic 

aberrations in delirium patients. Interestingly, there were overlaps between the primary and 

secondary biomarkers, as evidenced by 8 shared metabolites, including inositol, Gamma-

Aminobutyric Acid (GABA), biotin, and others. Of particular interest, the primary 

metabolomic markers of POD included neurotransmitters such as GABA, serotonin and its 

precursors L-Tryptophan and 5-Hydroxy-L-tryptophan. Given that some metabolites do not 
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cross the blood-brain barrier (BBB), we postulate that BBB permeability may be 

compromised due to neuroinflammatory processes in patients with POD. Notably, the 

outflow of CSF serotonin into blood plasma was insufficient for its classification as a primary 

marker, yet it was significant enough for inclusion among the secondary markers. 

Upon performing an overrepresentation analysis of Kyoto Encyclopedia of Genes and 

Genomes (KEGG) metabolic pathways based on the entire list of primary biomarker 

metabolites, no statistically significant results were obtained. Nevertheless, when the primary 

and secondary biomarkers were combined, metabolic pathways registering lowest p-values 

for primary biomarkers, such as "Tryptophan metabolism" and "Pyrimidine metabolism" 

emerged as statistically significant. Consequently, the secondary biomarkers amplified the 

statistical significance of enriched metabolic pathways, as determined by analysis of the 

primary markers. 

Utilizing ANDSystem for gene network reconstruction, we inferred the potential roles 

of established POD genetic markers in regulation of the identified metabolic pathways. 

Several genetic markers of POD, including IFNG, TNFA, LEP, and IL6 had a substantial 

regulatory impact on metabolic pathways. 

 

Results 

Preliminary Statistical Analysis 

Following the preprocessing of LC-MS/MS metabolomic data of preoperative blood 

plasma samples, 210 metabolites were selected for evaluation (Supplementary Table S1). 

Based on post-surgical observations, all patients were classified into POD and non-POD 

groups. An initial comparative statistical analysis was carried out on the obtained 

metabolomic data of both patient groups for each of the 210 metabolites using the Mann-

Whitney test (Supplementary Table S2). This analysis failed to reveal statistically significant 

differences between the two patient groups. The lack of detection of individual metabolomic 

markers could potentially be attributed to the complexity of the molecular genetic 

mechanisms underlying predisposition to POD, which likely involve the interplay of multiple 

metabolites. 

Identification of the Primary Metabolomic Markers 

Due to the incapacity of the basic statistical analysis to identify individual 

metabolomic markers, we next employed the methods that could facilitate the identification 

of not just distinct metabolites, but their combinations. For this purpose, we utilized a genetic 

algorithm method as described by Lu et al.54. The fitness of the individual in this method was 

assessed using an XGBoost model, which was provided with different combinations of 

metabolite concentrations generated by the "mutations" and "recombinations" facilitated by 

the genetic algorithm. This strategy yielded combinations of metabolites that optimally 

differentiated between patients with and without POD based on the concentration values of 

these metabolites. Each of these combinations comprised 3 to 4 metabolites. The accuracy of 

all combinations, as estimated via cross-validation, was found to be 83.3%. 

The aggregated list of metabolites encompassed within these combinations amounted 

to 37 unique entities (Supplementary Table S3). It is noteworthy that L-lactic acid was a 

constituent in all combinations, while Inositol featured in 95%, Methylcysteine in 40%, and 

Adenine in a mere 12%. The area under the ROC curve (AUC) for the metabolite triad of L-

lactic acid, Inositol, and Methylcysteine was 0.989 (Fig. 1). Consequently, these metabolites 

may be considered as pivotal biomarkers for the onset of POD. 
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Fig. 1. Classification accuracy for distinguishing between postoperative delirium (POD) and 

non-POD patient groups. 

 

We examined overrepresented KEGG metabolic pathways associated with the 

consolidated list of primary biomarkers using MetaboAnalyst 5.0. The KEGG pathways 

"Pyrimidine metabolism", "Tryptophan metabolism", and "Purine metabolism" were enriched 

with primary markers, however, the FDR values were insignificant (Table 1).  

 

Table 1. Analysis of overrepresented KEGG metabolic pathways associated with the set of 

primary metabolomic markers. 

KEGG pathway Total 
Metabolomic 

Markers (Hits) 
p-value FDR 

Pyrimidine metabolism 39 3 0.006 0.256 

Tryptophan metabolism 41 3 0.006 0.256 

Purine metabolism 70 3 0.028 0.616 

 

The enrichment analysis aims to identify metabolic pathways that exhibit systemic 

disturbances. However, indicators of the metabolic pathway disruptions can comprise not 

only increased or decreased concentrations of the individual metabolites, but also the 

disturbances of coordination or correlation between the concentrations of metabolites 

implicated in the metabolic pathway14. Metabolites exhibiting disrupted correlations with 

other metabolites in the context of a pathological process may be termed as the secondary 

metabolomic markers16. 

 

Identification of the Secondary Metabolomic Markers 

To disclose the secondary metabolomic markers, we utilized an anomaly detection 

methodology via denoising autoencoder models, as delineated by Sakurada et al.49. This 

application of autoencoder, inherently proficient at deciphering multiple nonlinear 

correlations amongst features, holds a distinct advantage over the linear pairwise correlation 

methods such as principal component analysis (PCA). The topology of an autoencoder 

includes the input layer, hidden layers, and the output layer, in which neuron values 

reconstruct the input neuron values. We herein employed a three-layer denoising 
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autoencoder. The metabolite concentrations in the non-POD patient group served as the input 

data for autoencoder training. 

We further adopted the strategy suggested by Sakurada et al.49 to identify the 

secondary markers. This involved training the autoencoder model on the established dataset, 

followed by model application to a new dataset harboring anomalies that were absent in the 

training set. Features were considered as anomalous if their reconstruction employing a 

denoising autoencoder yielded significant discrepancies at the output layer values compared 

to the input layer values. We examined various values for the number of neurons in the 

hidden layer (Supplementary Table S4). A total of 100 autoencoder models were trained at 

different parameter values. The trained models were subsequently applied to the metabolomic 

profile data of POD patients. Metabolites whose concentrations were predicted by 

autoencoder with statistically significant deviations from the input data were classified as the 

secondary markers. 

Despite achieving nearly identical training accuracy across the different parameters, 

application of these models yielded varying sets of the secondary markers. However, certain 

metabolites recurred frequently. We deemed metabolites resilient to the model parameter 

changes as the most crucial markers. The list of metabolites, ranked by the number of 

autoencoder models that identified them as the secondary markers, is presented in 

Supplementary Table S5. We conducted an overrepresentation analysis of KEGG metabolic 

pathways for 26 metabolites uncovered by 100 autoencoder models, however, the FDR 

values were insignificant (Table 2).  

 

Table 2. Overrepresented KEGG metabolic pathways for the set of secondary markers 

identified by 100 autoencoder models. 

KEGG Metabolic pathway Total Hits P-value FDR 

beta-Alanine metabolism 21 2 0.006 0.403 

Glycine, serine and threonine 

metabolism 33 3 0.015 0.403 

 

Of great interest is a set of metabolites that were identified in fewer numbers of 

models. A list of metabolites identified by at least 97 models included serotonin and was 

selected as the secondary markers set. The enrichment analysis of KEGG metabolic pathways 

for the resulting list of 54 secondary markers revealed the same metabolic pathways with 

statistical significance (Table 3). 

 

Table 3. Overrepresented KEGG metabolic pathways for the set of the secondary markers 

identified by 97 autoencoder models. 

KEGG Metabolic pathway Total Hits P-value FDR 

Glycine, serine and threonine 

metabolism 33 4 2.03E-4 0.0163 

beta-Alanine metabolism 21 3 8.99E-4 0.036 

 

The overlap between the primary and secondary metabolomic markers is noteworthy, 

with 8 metabolites identified as both primary and secondary markers (Table 4). This 

intriguing intersection suggests that these dual-status entities may hold a privileged position 

in the metabolic dysregulation associated with postoperative delirium. For instance, inositol 
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was identified as both primary and secondary marker and was previously proposed as a 

prognostic marker of POD.  

 

Table 4. Metabolites serving as both the primary and secondary metabolomic markers. 

KEGG Id Metabolite 
Primary marker 

importance 

C00137 Inositol 87 

C00120 Biotin 3 

C01089 3-hydroxybutyric acid 1 

C00318 Carnitine 1 

C00334 Gamma-Aminobutyric acid 1 

C00258 Glyceric acid 1 

C00106 Uracil 1 

C00438 Ureidosuccinic acid 1 

 

According to our definition, the secondary markers are characterized by disrupted 

inter-metabolite correlation relationships. We hypothesized that these relationships could 

primarily be disrupted in the metabolic processes involving the primary metabolomic 

markers. Consequently, the conducted overrepresentation analysis for the combined list of 

primary and secondary metabolomic markers would yield more accurate identification of the 

metabolic pathways disrupted in patients with POD. 

To validate this hypothesis, we merged the lists of primary and secondary biomarkers 

to further analyze overrepresented KEGG metabolic pathways. Consistent with our 

expectations, the overrepresentation analysis of metabolic pathways for the combined list of 

primary and secondary metabolomic markers revealed statistically significant results. After 

multiple comparisons adjustment "Glycine, serine, and threonine metabolism", "Aminoacyl-

tRNA biosynthesis", and others were present among the significant metabolic pathways 

(Table 5). It is worth noting that the "Glycine, serine, and threonine metabolism" pathway 

previously exhibited statistical significance in the overrepresentation analysis for the set of 

secondary metabolomic markers (Table 3). 

 

Table 5. Overrepresented KEGG metabolic pathways for the combined set of primary and 

secondary metabolomic markers. Metabolites that are primary and secondary markers are 

marked in bold. 

KEGG pathway Total FDR 

Primary Metabolomic 

Markers (Hits) 

Secondary 

Metabolomic 

Markers (Hits) 

Glycine, serine and 

threonine metabolism 33 0.0021 Betaine; Glyceric acid 

L-Serine; Choline; 

Betaine aldehyde; 

Guanidoacetic acid; 

Cystathionine; L-

Threonine; Glyceric 

acid 

Aminoacyl-tRNA 

biosynthesis 48 0.0028 

L-Leucine; L-Tryptophan; 

L-Tyrosine 

L-Histidine; L-Arginine; 

L-Serine; L-Valine; L-

Threonine; L-Proline 
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Tryptophan 

metabolism 41 0.0239 

L-Tryptophan; 5-Hydroxy-

L-tryptophan 

Serotonin; 3-

Hydroxyanthranilic acid; 

L-Kynurenine; Acetyl-

CoA 

Arginine biosynthesis 14 0.0351 N-Acetylglutamic acid 

L-Arginine; Citrulline; 

Ornithine 

Butanoate metabolism 15 0.0372 

3-hydroxybutyric acid; 

Gamma-Aminobutyric 

acid; D-2-Hydroxyglutaric 

acid 

3-hydroxybutyric acid; 

Acetyl-CoA; Gamma-

Aminobutyric acid 

Valine, leucine and 

isoleucine biosynthesis 8 0.0375 L-Leucine L-Threonine; L-Valine 

Arginine and proline 

metabolism 38 0.0375 

Gamma-Aminobutyric 

acid 

L-Arginine; 

Guanidoacetic acid; 

Gamma-Aminobutyric 

acid; Spermine; 

Ornithine; L-Proline 

Pyrimidine 

metabolism 39 0.0376 

Cytidine; Thymine; 

Ureidosuccinic acid; 

Uracil 

Uridine; Ureidosuccinic 

acid; Uracil; 

Deoxyribose 1-

phosphate 

Ubiquinone and other 

terpenoid-quinone 

biosynthesis 9 0.0394 

L-Tyrosine; Homogentisic 

acid Phenyllactic acid 

In the assessed KEGG metabolic pathways, "Glycine, serine and threonine 

metabolism" pathway emerged as the most statistically significant. This pathway 

incorporated two primary and seven secondary markers. A comparable proportion of primary 

to secondary markers was discernible among the metabolites of "Aminoacyl-tRNA 

biosynthesis" pathway. 

 

Reconstruction of Gene Networks of Overrepresented KEGG Metabolic Pathways 

Regulation by Genetic Markers of POD 

 At the next stage we extracted the genetic markers of POD from existing scientific 

reports (Supplementary Table S6). A compilation of 45 genes that were cited as POD 

markers and their role in the pathogenesis of POD extensively deliberated, were selected for 

analysis. Many of these genetic markers of POD are inflammatory factors, and their escalated 

levels have been documented in the plasma of POD patients in the preoperative and/or early 

postoperative period55,56. For instance, elevated plasma concentrations of interleukin 6 (IL6), 

tumor necrosis factor alpha (TNFA), and vascular endothelial growth factor (VEGF) have 

been detected in the early postoperative period in elderly patients who exhibited POD57. 

We proposed that POD genetic markers could play a substantial role in the 

mechanisms of POD pathogenesis, potentially through their involvement in metabolic 

pathway disruption. To validate this hypothesis, we reconstructed molecular genetic 
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regulatory pathways using ANDSystem, according to the Templates shown in Table 12. Each 

of the reconstructed regulatory pathways starts with proteins encoded by POD genetic 

markers, involves intermediate components – human proteins and genes – and ends with 

metabolic pathway enzymes. We considered a set of interactions between regulatory pathway 

participants, including regulation of gene expression, regulation of protein 

activity/degradation/transport, protein-protein interactions, and others. Consequently, these 

pathways can elucidate numerous regulatory events through which POD genetic markers 

could modulate the activity of metabolic pathway enzymes. We aimed to discover potential 

regulatory pathways for "Glycine, serine, and threonine metabolism" and "Aminoacyl-tRNA 

biosynthesis" by genetic markers of POD, as these metabolic pathways were identified as 

overrepresented with FDR<0.01. The gene networks representing regulation of the enzymes 

of "Glycine, serine, and threonine metabolism" and "Aminoacyl-tRNA biosynthesis" 

metabolic pathways are illustrated in Fig. 3. 

 

 
Fig. 2. Gene network of regulation of "Glycine, serine, and threonine metabolism" enzymes 

by POD genetic markers. 



10 

 
Fig. 3. Gene network of regulation of "Aminoacyl-tRNA biosynthesis" metabolic pathway 

enzymes by POD genetic markers. 

 

A graph of a gene network includes linear chains and numerous branches, as well as 

chain convergences, that denote interactions between entities. The objects outlined in red 

ovals on Fig. 3 illustrate the participants of the example regulatory pathways within the gene 

network. IL8, the genetic marker of POD, modulates the activity of tyrosine protein kinase 

SYK along a linear chain through upregulation of the expression of intermediate gene 

ITGAM. Through a branched segment of gene network, tryptophan t-RNA ligase (WARS1) 

expression is directly upregulated by interferon gamma (IFNG), while leptin (LEP) 

modulates WARS1 expression through downregulation of intermediate gene ATF4. As a 

result, the gene network graphs facilitate the elucidation of the extent to which POD genetic 

markers exert regulatory influences on the enzymes of each of the overrepresented KEGG 

pathways.  

Analysis of the gene networks (Figs. 2, 3) reveals that 21 genetic markers regulate 

enzymes of the "Glycine, serine, and threonine metabolism" pathway and 9 genetic markers 

regulate enzymes of "Aminoacyl-tRNA biosynthesis". Table 6 contains characteristics of the 

regulatory pathways, including the number of POD genetic markers that modulate enzymes 

involved in KEGG metabolic pathways (N1), along with the number of enzymes under 

regulation (N2). In Table 6, certain genetic markers are represented in more than one 

template for the gene network of each metabolic pathway (a single marker may be included 

in several templates). Among the metabolic pathways whose enzymes are most regulated, the 

"Glycine, serine, and threonine metabolism" pathway emerged as the most regulated. 

Comparable statistics can be calculated for the regulatory pathway Templates. The regulation 

of enzymes by genetic markers is executed to the greatest extent through pathways built 

according to the double regulation of expression template (P4). 
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Table 6. Quantitative indicators of POD genetic markers (N1) and their corresponding 

regulated metabolic pathway enzymes (N2) as per regulatory pathway templates. 

KEGG pathway Regulatory pathways 

P1 P2 P3 P4 P5 

N

1 
N2 N1 N2 N1 

N

2 
N1 

N

2 
N1 

N

2 

Glycine, serine, and threonine 

metabolism 
2 3 3 5 3 3 15 13 5 3 

Aminoacyl-tRNA biosynthesis 1 1 0 0 1 2 10 3 5 2 

 

 In delineating the influence of distinct genetic markers on the regulation of metabolic 

pathways, we quantified the number of enzymes regulated by each of the genetic markers 

(Fig. 4). It is noteworthy that 16 out of 23 markers exhibited a preferential affinity for 

specific metabolic pathways. For instance, TNFA specifically regulated the enzymes of 

"Glycine, serine, and threonine metabolism" pathway. Alternatively, genetic markers LEP, 

IL6, IL10, IFNG, IL8, GCR, and TAU exerted regulation over the both overrepresented 

metabolic pathways. 

 
Fig. 4. The number of regulated enzymes in KEGG metabolic pathways for each of the POD 

genetic markers. 

 

It is critical to underscore that gene regulatory networks were reconstructed using the 

ANDSystem, which is based on the text-mining approaches, and the statistics derived may be 

incomplete, as the reconstruction leveraged automated tools within the ANDSystem 

knowledge base. A characteristic of text mining applications is their ability mostly to discern 

regulatory interactions that are well-studied and comprehensively documented in the 

literature. 

 

Reconstruction of the Gene Regulatory Networks for Metabolomic Markers not 

Present in Overrepresented Metabolic Pathways 

 It is worth noting that not all of the POD metabolomic markers identified by our study 

were found to participate in the overrepresented metabolic pathways. Among these are L-

lactic acid and Inositol that assume significant roles as the primary markers. To detail the 

regulation of these metabolites by POD genetic markers, we reconstructed gene networks of 
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regulation of the enzymes involved in lactate and myo-inositol metabolism. We retrieved 

enzymes implicated in lactate and myo-inositol metabolism from the KEGG database. To 

locate these enzymes, we queried the KEGG Pathway database 

(https://www.genome.jp/kegg/pathway.html) using the identifiers C00186 (lactate) and 

C00137 (myo-inositol) and obtained 12 and 7 metabolic pathways for these metabolites, 

respectively. Only human metabolic pathways with the 'hsa' prefix were considered. The 

search list for subsequent analysis comprised enzymes that directly catalyze reactions 

involving the target metabolite (myo-inositol or lactate), as well as enzymes catalyzing 

upstream and downstream reactions. We accounted for one to two intermediate upstream 

reactions and a single downstream reaction link and identified nine enzymes associated with 

lactate metabolism, as well as 27 enzymes associated with myo-inositol metabolism (Tables 

7, 8). To reconstruct the regulatory pathways that elucidate the mechanisms of POD genetic 

marker influence on the identified enzymes, we employed the same Templates that were used 

for analysis of the overrepresented metabolic pathways (Table 12). Notably, the final links of 

the Templates were enzymes involved in lactate or myo-inositol metabolism pathways 

(Tables 7, 8). 

Gene regulatory networks including the enzymes involved in lactate and myo-inositol 

metabolism are depicted in Figs. 5 and 6, respectively. To describe these gene networks, we 

compiled tables containing POD genetic markers and the enzymes regulated by them along 

with the names of KEGG metabolic pathways (Tables 7, 8). 

 
Fig. 5. Gene network of regulation of lactate metabolism enzymes by POD genetic markers. 

 

Table 7. Descriptive features of gene network of regulation of lactate metabolic pathway 

enzymes. 

№ KEGG lactate metabolism 

pathways 

Enzymes in the 

metabolic 

pathway 

Regulatory genetic markers 

https://www.genome.jp/kegg/pathway.html
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1 
Glycolysis / 

Gluconeogenesis: hsa00010; 

LDHA APOE, CCL2, GDNF, HMGB1, 

IGF1, IFNG, IL1B, IL2, IL6, 

IL6RA, IL8, IL10, LEP, TLR4, 

TNFA 

 

LDHB 

 

IL1B, S100B, TNFA 

 

2 
HIF-1 signaling pathway: 

hsa04066 
LDHC, 

LDHAL6A, 

LDHAL6B 

- 

3 
Pyruvate metabolism: 

hsa00620 

GLO2 APOE 

LDHA APOE, CCL2, GDNF, HMGB1, 

IGF1, IFNG, IL1B, IL2, IL6, 

IL6RA, IL8, IL10, LEP, TLR4, 

TNFA 

 

LDHB 

 

IL1B, S100B, TNFA 

 

GLUL, GRHPR, 

HAGH, LDHC, 

LDHD, 

LDHAL6A, 

LDHAL6B 

- 

 

As illustrated in Table 7, lactate dehydrogenase chain A (LDHA) is under the most 

profound regulatory control, with 15 POD genetic markers exerting influence. A total of 19 

genetic markers take part in modulation of the enzymes pertinent to lactate metabolic 

pathways. Concurrently, APOE, IL1B, and TNFA each regulate two corresponding enzymes 

implicated in lactate metabolism pathways. 
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Fig. 6. Gene network of regulation of inositol metabolism enzymes by POD genetic markers. 

As per the data shown in Table 8, the enzymes Inositol polyphosphate 4-phosphatase 

type II (INP4B) and Inositol 1,4,5-trisphosphate receptor type 3 (ITPR3) are primarily 

regulated, with six POD genetic markers directing regulatory links towards them. Fourteen 

POD genetic markers are implicated in the regulation of enzymes participating in inositol 

metabolism. Importantly, IL6, IL8, and LEP act as regulators of four enzymes – INP4B, 

ITPR3, PLCB2, and PLCD1 – involved in inositol metabolism pathways. 

 

Table 8. Characteristics of gene regulatory network of inositol metabolic pathway enzymes. 

№ KEGG inositol 

metabolism pathways 

Enzymes in the 

metabolic pathway 

Regulatory genetic markers 

1 

Inositol phosphate 

metabolism: 

hsa00562 

IMPA1 S100B 

IMPA2 THIO 

INP4B CCL2, IGF1, IL6, IL6RA, IL8, 

LEP 

INP5K BDNF 

ITPR3 HMGB1, IL6, IL8, LEP, MMP9, 

TLR4 

CDIPT, INP1, INP4A, 

ISYNA1, MIOX, 

MTM1 

- 

2 
Phosphatidylinositol 

signaling system: 

IMPA1 S100B 

IMPA2 THIO 
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hsa04070 INP4B CCL2, IGF1, IL6, IL6RA, IL8, 

LEP 

PLCB2, PLCD1 IL6, IL8, LEP 

PLCG1 PECA1 

PLCG2 TAU 

BPNT2, CDIPT, INP1, 

INP4A, INP5A, 

MTM1, PLCs 

- 

3 
Ascorbate and aldarate 

metabolism: hsa00053 

MIOX - 

 

Among the set of metabolites, gamma-aminobutyric acid (GABA) merits specific 

consideration. Our LS-MS/MS metabolomic analysis revealed a decreased GABA 

concentration in the POD patients group. The gene network delineating the regulation of 

GABA metabolism enzymes by POD genetic markers is depicted in Fig. 7, with principal 

gene network components shown in Table 9. To reconstruct the gene network, we extracted 

13 enzymes implicated in GABA metabolism from the KEGG database. 

 
Fig. 7. Gene network of regulation of GABA metabolism enzymes by POD genetic markers. 

As shown in Table 9, glutaminase (GLSK) emerges as the primary target of regulatory 

effects, with 14 POD genetic markers directing their influence towards it. 17 distinct POD 

genetic markers are implicated in regulation of GABA metabolism enzymes. Among these 

are glucocorticoid receptor (GCR) and interleukin 2 (IL2), each modulating four distinct 

enzymes involved in GABA metabolism. 

 

Table 9. Characteristics of gene regulatory network of GABA metabolic pathway enzymes. 

№ KEGG GABA 

metabolism pathways 

Enzymes in the 

metabolic pathway 

Regulatory genetic markers 

1 
GABAergic synapse: 

hsa04727 

GLSK GDNF, GCR, HMGB1, IGF1, 

IFNG, IL1B, IL1RA, IL2, IL6, 

IL8, IL10, LEG3, LEP, TLR4 
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GLSL GCR, IGF1, IL1RA, IL6, IL8, 

IL10, LEG3, LEP, TLR4 

GAD1 APOE, BDNF, GCR, GDNF, 

IL1B, IL2, IL6 

GAD2 GCR, IL2 

GABT - 

2 
Arginine and proline 

metabolism: hsa00330 

ALDH2 IL2 

ALDH1B1, ALDH3A2, 

ALDH7A1, 

ALDH9A1, CNDP1, 

CNDP2, GATM 

- 

3 
Butanoate metabolism: 

hsa00650 

GAD1 APOE, BDNF, GCR, GDNF, 

IL1B, IL2, IL6 

GAD2 GCR, IL2 

GABT - 

 

It is critical to highlight that gamma-aminobutyric acid possesses an inherent inability 

to cross the blood-brain barrier (BBB). Consequently, any correlation between GABA 

concentrations in blood plasma and cerebrospinal fluid may be tenuous. To account for the 

observed relationships between blood plasma and cerebrospinal fluid metabolites, we propose 

two potential mechanistic explanations. Firstly, we posit that the reconstructed gene 

regulatory networks may function similarly across various tissue types, including brain cells. 

Regulatory influences may thus drive congruent directional changes in metabolite 

concentration in cerebrospinal fluid and blood plasma, despite potential disparities in the 

absolute concentration values. We therefore hypothesize that POD genetic markers may 

induce changes in metabolite concentrations through mechanisms that are analogous in the 

brain and cerebrospinal fluid. Alternatively, the BBB in POD patients might have 

experienced localized disruption, thus fostering partial permeability to metabolites. 

A noteworthy outcome of our analyses is the identification of serotonin as a secondary 

metabolomic marker, as outlined in Supplementary Table S5. Given that serotonin was not 

identified within the overrepresented metabolic pathways, we reconstructed the gene network 

through which POD genetic markers could potentially modulate serotonin levels. Towards 

this, we considered nine enzymes derived from two KEGG serotonin metabolism pathways 

(Fig. 8). The key constituents of this gene network are enumerated in Table 10. 
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Fig. 8. Gene network of regulation of serotonin metabolism enzymes by POD genetic 

markers. 

 

Table 10. Characteristics of gene regulatory network of the enzymes in serotonin metabolic 

pathways. 

№ KEGG serotonin 

metabolism pathways 

Enzymes in the 

metabolic pathway 

Regulatory genetic markers 

1 
Serotonergic synapse: 

hsa04726 

TPH1 ALBU, GCR, IGF1, IL1B, IL2, 

IL6, IL10, LEP, THIO, TLR4, 

TNFA 

DDC BDNF, GDNF, IGF1, IL2, LEP 

TPH2 GCR, LEP 

AOFA APOE, TLR4 

AOFB APOE, LEP 

2 
Tryptophan metabolism: 

hsa00380 

I23O1 ALBU, CCL2, GCR, HMGB1, 

IFNG, IL1B, IL2, IL6, IL8, IL10, 

LEG3, LEP, TLR4, TNFA, 

TNR1B 

DDC BDNF, GDNF, IGF1, IL2, LEP 

I23O2 IL2, LEP 

AOFA APOE, TLR4 

AOFB APOE, LEP 

INMT, SNAT - 

 

 In accordance with Table 10, I23O1 enzyme that is responsible for catalyzing 

oxidation of L-tryptophan receives the highest number of regulatory impacts from 15 POD 

genetic markers. A cumulative total of 21 POD genetic markers contribute to the regulation 
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of serotonin metabolism enzymes. Remarkably, leptin (LEP) exerts regulatory control over 

six enzymes involved in serotonin metabolism – AOFB, DDC, IDO1, IDO2, TPH1, and 

TPH2. 

 

Discussion 

The understanding of the molecular mechanisms underlying postoperative delirium 

remains incomplete, despite ongoing research efforts. To date, identification of the prognostic 

metabolomic markers of POD following major surgical operations remains elusive. This 

challenge is largely attributed to the complex systemic perturbations at the genetic and 

metabolomic levels entrenched in POD pathology, which hamper the delineation of 

discernible patterns using conventional statistical methodologies. In this study, we sought to 

identify the potential primary and secondary metabolomic biomarkers of POD from 

metabolomic data. We employed an integrative approach, involving statistical methodologies, 

the genetic algorithm, and artificial neural networks. 

Acknowledging the complex pathophysiological processes inherent to POD, we 

defined two categories of metabolomic markers to provide a comprehensive description of 

changes in the metabolomic status of POD patients compared to non-POD patients. Primary 

markers, within the context of our study, are distinguished by a unidirectional alteration in 

concentration in blood plasma of patients with POD. Secondary metabolomic markers are 

typified by disruptions in inter-metabolite correlation relationships. 

It is critical to underscore that many of the identified metabolites are incapable of 

crossing the blood-brain barrier (BBB) from blood plasma to directly influence the central 

nervous system. Furthermore, the concentrations of such metabolites in blood plasma and 

cerebrospinal fluid may not correlate. To interpret the results of blood plasma metabolomic 

analysis that allow us to hypothesize the mechanisms of disturbances in the brain, we 

postulated two assumptions. Our primary assumption is predicated on the expectation that the 

reconstructed gene regulatory networks function comparably across diverse tissues. 

Consequently, it can be anticipated that in various tissues POD genetic markers exert similar 

effects on metabolite concentration despite potential disparities in the values of metabolite 

concentrations across different tissues. An alternative hypothesis posits that inflammatory 

processes in POD could potentiate increased BBB permeability to various metabolites58,59. 

 

Metabolomic Markers of Postoperative Delirium 

Our findings reveal that lactate and inositol are amongst the most prominent potential 

primary metabolomic markers for postoperative delirium (Supplementary Table S3). Through 

the use of gene networks, we elucidate the potential regulatory mechanisms regulating the 

metabolism of lactate and inositol, both of which are significant metabolomic markers of 

POD (Tables 7, 8). 

An elevated concentration of lactate detected in patients' plasma prior to surgery may 

serve as a risk factor for POD. Lactate plays a crucial role in energy metabolism and can 

impact tissue perfusion60. The concentration of lactate in patients' plasma at the preoperative 

and early postoperative periods may function as a prognostic metabolomic marker of POD. 

Lactic acid, as well as glucose, is vital for providing energy to brain cells. During anaerobic 

conditions and hypoxia, lactic acid is involved in cellular metabolic pathways and serves as a 

substrate for tissue perfusion61. Lactate has been recognized as a marker of ischemia, 

hypoxia, and CNS damage67,82. The concentrations of glucose and lactate in blood plasma 

may reflect the stress response to surgical intervention. Decreased levels of glucose and 

lactate were observed in patients prior to cerebral aneurysm-related surgery62. In addition, S-

methylcysteine emerged as one of the most important primary metabolomic markers 

(Supplementary Table S3). Guo et al. identified S-methylcysteine, eicosapentaenoic acid, 
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linolenic acid and linoleic acid as the metabolomic indicators associated with an elevated risk 

of POD63.  

Secondary metabolomic markers are characterized by a disrupted correlation with 

other metabolites, as opposed to a shift towards an increase or decrease in the POD group, as 

seen with primary markers. Consequently, not all secondary markers demonstrated 

statistically significant differences in concentration when comparing POD and non-POD 

groups. Our analysis intriguingly identified neurotransmitters as the POD potential markers. 

Specifically, serotonin was amongst the secondary metabolomic markers. It was reported that 

serotonin in the cerebrospinal fluid of the brain is a well-established marker of POD64,65. 

Plasma and CSF serotonin concentrations may not correlate due to the inability of the 

serotonin molecule to cross the blood-brain barrier. Nonetheless, we propose that disruptions 

in serotonin metabolism, which identified this neurotransmitter as a secondary marker, may 

be mediated by the influence of POD genetic markers sharing similar characteristics across 

various tissues, including brain tissues. Accordingly, the detection of other metabolites that 

are incapable of crossing the blood-brain barrier may be interpreted as potential markers of 

POD. Another example of a neurotransmitter marker is GABA, which was identified as both 

a primary and secondary metabolomic marker of POD. 

 

Overrepresented Metabolic Pathways 

Through the analysis of KEGG metabolic pathways, overrepresented within both the 

primary and secondary markers, a set of statistically significant metabolic pathways were 

discerned (Tables 3, 4). Notably, the analysis conducted exclusively on the primary marker 

set did not yield statistically significant results, likely due to the intricate nature of metabolic 

pathway dysfunction. This complexity encompasses not only directional shifts in metabolite 

concentrations but also the coordination in the variability of metabolite pathway participants. 

Consequently, the need for advancing bioinformatic methods for identifying secondary 

metabolomic markers is underscored. 

The overrepresented metabolic pathways identified herein, are frequently related to 

amino acid metabolism. It is established that mechanisms such as amino acid metabolism 

pathway disorders, fatty acids, and the activation of alternative energy metabolic processes, 

are implicated in the pathogenesis of POD66,84. Guo et al., in their study of patients who 

underwent arthroplasty following a hip fracture, identified oxidative stress disorders, 

disruptions in energy metabolism and amino acid metabolism pathways in patients with 

POD68. According to the report, alterations in fatty acid and amino acid metabolism could 

take part in the pathophysiology of POD. 

Tripp et al. conducted a computational analysis of blood plasma metabolomic profiles 

in elderly surgical patients. Based on metabolomic data, they conducted an 

overrepresentation analysis of KEGG metabolic pathways, which revealed alterations in the 

"Valine, leucine, and isoleucine biosynthesis" pathway in patients with POD on the day prior 

to surgery, and metabolites of the "Citrate cycle" pathway on the second day 

postoperatively69. Interestingly, we also identified the "Valine, leucine, and isoleucine 

biosynthesis" pathway as overrepresented within the primary and secondary metabolomic 

markers set. 

Takahashi et al. constructed a protein-protein interaction network and identified two 

sets of human genes associated with POD development70. Their overrepresentation analysis 

revealed KEGG metabolic pathways enriched with POD genetic markers, including 

"neuroactive ligand-receptor interaction", cAMP, IL17, and TNF signaling pathways. Among 

the Gene Ontology terms enriched with POD genetic markers were "glutamate receptor 

activity", "neurotransmitter receptor activity", "G protein-coupled serotonin receptor 



20 

activity". In line with our findings, the metabolic pathways including neurotransmitter 

metabolism were among the overrepresented metabolic pathways. 

 

Gene networks regulating metabolic pathways with POD genetic markers 

Recently, several genetic markers for postoperative delirium, implicated extensively 

in the pathogenesis of POD, have been identified71. These markers are supposed to take part 

in initiating molecular pathways linked to the pathophysiology of delirium, including 

neuroinflammation, blood-brain barrier disruption, neurotransmitter imbalance, oxidative 

stress, neuroendocrine dysregulation, and neuronal connectivity disorganization72. By 

reconstructing and analyzing gene networks, we propose that these genetic markers, when 

dysregulated in the POD group, can instigate systemic disturbances in metabolic pathways. 

This is achieved through abnormal regulation of enzyme expression, activity, and stability 

(Figs. 2, 3). Among the analyzed POD genetic markers (Supplementary Table S6), TNFA is 

involved in regulation of the greatest number of enzymes within the overrepresented 

metabolic pathways (Fig. 4). Consequently, these genetic markers may serve as the key 

factors in metabolic pathway dysfunction identified via overrepresentation analysis. 

As illustrated in the gene network graph (Fig. 3), interleukin-6 could potentially 

regulate SYAC and SYAM enzymes of the "Aminoacyl-tRNA biosynthesis" metabolic 

pathway, with the involvement of granzyme B and FTO protein. In the presence of IL6 and 

inflammation, GZMB gene expression may be decreased73,74. Granzyme B enzyme can cleave 

histidyl-, isoleucyl-, alanyl-tRNA synthetases75. Concurrently, via the STAT3 signaling 

pathway, IL6 is capable of enhancing FTO gene expression. Notably, FTO deficiency can 

result in diminished expression of LRS (leucyl-tRNA synthetase, SYLC) and other 

aminoacyl-tRNA synthetase family enzymes76. These enzymes catalyze the binding of amino 

acids to aminoacyl-tRNA, thereby directly influencing the primary metabolomic markers 

identified as alanine, leucine, and isoleucine. 

Although our metabolomic analysis of blood plasma revealed these amino acids to be 

decreased in the POD group (Supplementary Table S1), this reduction aligns with the 

anticipated regulatory effect of IL6 overexpression as suggested by the gene network. 

Preoperative elevation of IL6 was observed in POD patients77. Another regulatory pathway 

example is the IFNG→Tryptophanyl-tRNA synthetase pathway (Fig. 3). As per the gene 

network, IFNG directly enhances WARS1 (Tryptophanyl-tRNA ligase 1) expression, and that 

upregulation may result in a decrease in tryptophan content78. Our data identified tryptophan 

as a primary metabolomic marker, and this metabolite was found to be decreased in the POD 

group. It is crucial to consider the whole set of regulatory effects on the target gene described 

by the gene network when assessing the impact of a specific regulatory pathway. The 

interference of multiple regulatory pathways, which together form the gene network, 

necessitates the use of mathematical modeling methods. Therefore, in the future studies, we 

are planning to interpret regulatory pathways at a qualitative level. 

In an investigation of the regulatory pathways that potentially disrupt the function of 

enzymes in the "Glycine, serine, and threonine metabolism" pathway, IFNG→BHMT1, 

IL1B→BHMT1, TNFA→BHMT1 emerge as important contributors (Fig. 2). The gene 

network suggests that IFNG, IL1B, and TNFA can stimulate RELA gene expression, which 

encodes the TF65 transcription factor. TF65 in turn can inhibit the transcriptional activity of 

the BHMT1 (Betaine-homocysteine S-methyltransferase 1) promoter. Of particular note, the 

BHMT1-mediated conversion involves secondary metabolomic markers L-homocysteine and 

L-methionine79. 

Investigating the potential influence of POD genetic markers on the deviant regulation 

of metabolomic markers that were not incorporated into the primary metabolic profile (PMP), 

we reconstructed gene networks for metabolic pathways housing the relevant enzymes. This 
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enabled us to postulate the principal regulators of these relevant enzymes within the set of 

POD genetic markers. As per our prior demonstration (Table 7), the regulation of inositol was 

primarily influenced by IL6, IL8, and LEP, while lactate regulation was mainly driven by 

APOE, IL1B, and TNFA. 

For instance, the gene network in Fig. 5 indicates that IL6 regulates the expression of 

CD274, FOSL, NNMT, STAT3, and VEGFA, whose protein products subsequently regulate 

the expression of LDHA (L-lactate dehydrogenase A chain). LDHA mediates the reversible 

conversion of lactate to pyruvate. It is noteworthy that associations between STAT3 and 

VEGFA elevated expression and POD development were identified in prior studies57,83. The 

enzyme NNMT catalyzes the transmethylation of nicotinamide. Intriguingly, the FOSL (Fos-

related antigen 1) and CD274 (Programmed cell death 1 ligand 1) genes are linked with 

apoptosis. It was established that the apoptotic processes in brain neurons constitute a part of 

the pathophysiological manifestations of postoperative delirium84. 

From the gene networks of GABA and serotonin regulation by genetic markers (Figs. 

7, 8), it is evident that serotonin is subject to more regulatory influence than GABA. A 

unique attribute of the serotonin gene network is the multifaceted regulation of the I23O1 

enzyme which catalyzes the oxidation reaction of L-tryptophan. This enzyme was reported to 

be associated with POD, due to its contribution to a decrease in L-tryptophan levels and a 

concurrent increase in kynurenine levels85. Notably, our analytical results identified L-

tryptophan and kynurenine as the potential POD metabolomic markers (Supplementary 

Tables S3, S5). 

In the analysis of pathologies such as postoperative delirium using blood plasma 

metabolomic data, a pertinent question regards the extent to which alterations in the plasma 

metabolomic profile can represent changes in the cerebrospinal fluid (CSF) and metabolomic 

status of the brain. Studies investigating correlations between changes in blood plasma and 

CSF metabolomic profiles are therefore of considerable relevance21. In this study, we 

hypothesize that certain metabolic pathways linked to POD development are disrupted in 

both blood plasma and CSF. This could particularly be evidenced by detection of elevated 

oxidative stress in cerebrospinal fluid, which can significantly impact the functioning of the 

nervous system. Preoperative low CSF saturation was previously suggested as a potential 

prognostic marker of POD86. In another study, based on CSF metabolomic analysis in 

patients undergoing arthroplasty, Pan et al. identified spermidine, putrescine, and glutamine 

as potential prognostic markers of POD87. The authors proposed the ratio of spermidine and 

putrescine concentrations to beta-amyloid 42 (Aβ42) as a potential marker of postoperative 
delirium. 

Notably, changes in the content and correlation of metabolites in blood plasma can 

reveal disruptions in the pathways of amino acid biosynthesis, energy metabolism, and 

oxidative stress. These disturbances can, in turn, contribute to the pathophysiology of POD69. 

According to the reconstructed gene networks, disruptions in the functioning of metabolic 

pathways leading to alterations in metabolomic profiles in the POD group can primarily be 

associated with the modified functions of POD genetic markers. 

The molecular mechanisms of postoperative delirium remain incompletely resolved, 

and the task of delineating reliable prognostic metabolomic markers post various surgical 

operations continues to present a formidable challenge – most predominantly in cardiac 

surgery. The complex nature of metabolomic data analysis in postoperative delirium studies 

can be attributed to the multifaceted systemic perturbations at the genetic and metabolomic 

levels inherent in this pathology, consequently impeding the attainment of robust results via 

conventional statistical methodologies. 

In this study, we put forward several innovative computational strategies for 

discerning potential primary and secondary metabolic markers of POD, grounded in the 
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examination of blood plasma metabolomic data from patients. These strategies encompass the 

deployment of the genetic algorithm coupled with artificial neural networks. Employing these 

methodologies to analyze blood plasma metabolomic data from patients, harvested cardiac 

surgery, facilitated the identification of a constellation of primary and secondary potential 

metabolomic markers of POD. L-Lactic acid, Inositol, Methylcysteine, and Adenine emerged 

as the pivotal primary markers, indicative of the metabolic concentration shifts in the POD 

group. A set of 54 metabolites, inclusive of neurotransmitters such as GABA and serotonin, 

were categorized as the secondary markers, characterized by their disrupted correlations with 

other metabolites in the POD group. 

Analysis of metabolic pathway overrepresentation, along with the reconstruction of 

gene regulatory networks, afforded us to postulate the interplay between perturbations in 

metabolic pathway functionality associated with a predisposition to POD and established 

genetic markers of POD, such as TNFA, LEP, IL6, and others. It is plausible to conjecture 

that functional disruptions in genetic POD markers could have an expansive influence on a 

spectrum of pathophysiological mechanisms, and that these genes have the potential to 

impact the metabolomic profile of patients. Collectively, the findings underscore the systemic 

essence of metabolic disturbances within patients exhibiting POD. 

Further experimental validation of the proposed hypotheses concerning the role of 

POD genetic markers in the aberrant regulation of metabolic pathways could potentially 

emerge as a promising trajectory in the exploration of POD pathogenesis. The suggested 

approach of bioinformatic analysis of metabolomic data utilizing the genetic algorithm and 

artificial neural network methodologies holds perspective for the identification of primary 

and secondary potential markers across a wide amount of metabolomic studies. 

 

Materials and Methods 

Study Subjects 

This study included patients aged 65 and above who underwent cardiac surgery 

involving cardiopulmonary bypass (CPB). Exclusion criteria included emergency 

intervention, aortic surgery, significant carotid artery stenosis, Parkinson's disease, liver 

cirrhosis (Child-Pugh Class B or C), and the consumption of anticholinergic drugs, 

antidepressants, antiepileptic medications, and chemotherapy drugs. Patient recruitment 

transpired between June 2019 and January 2021, resulting in inclusion of 39 patients in the 

study. Table 11 presents biometric data of the participants. Within five days post-surgery, the 

presence of postoperative delirium was ascertained using the CAM-ICU test (Confusion 

Assessment Method for the Intensive Care Unit). The initial test was conducted 6-8 hours 

post-surgery, followed by twice daily assessments. A positive CAM-ICU test at any time 

point was indicative of postoperative delirium. 

 

Table 11. Age and gender characteristics of the patients. 

Group Sex 

(M/F) 

Min. 

age 

Max. 

age 

Avg. 

age 

Media

n 

Standard 

Deviation 

Non-

POD 

11/16 65 75 69.6 70 3.0 

POD 5/7 65 79 69.7 69.5 4.3 

 

 

Compliance with Ethical Standards 

The Expert Committee granted approval for this study, according to protocol №10 
from 16 April 2019. The Ethics Committee of the E.N. Meshalkin National Medical Research 

Center (Novosibirsk, Russia) granted approval for this study from 26 April 2019 with 
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protocol №24, ensuring adherence to ethical guidelines. The WHO International Clinical 
Trials Registry Platform (ICTRP) registered this study at  ClinicalTrials.gov ID 

NCT03931499. 

 

Blood Sampling and Preparation 

Venous blood samples were collected from patients 24 hours after cardiac surgery, with a 

9 ml BD Vacutainer® KEDTA tube, containing potassium EDTA as an anticoagulant. 

Plasma was obtained via centrifugation at 2000 g and 4°C for a duration of 15 minutes, then 

portioned and cryopreserved at -80°C until its deployment for analysis. 

Adhering to the protocol proffered by Li et al.80, all plasma samples were processed in 

aggregate. Each of 100 μl aliquots of blood plasma was mixed with 400 μl cooled 
methanol/acetonitrile solution (1:1 ratio), vigorously shaken, and subsequently centrifuged at 

16,000 rpm and +4°C for 15 minutes. The supernatant was transferred into a glass vial insert 

for subsequent analysis. In parallel, two quality control samples were prepared by mixing 

equal volumes of blood plasma derived from the groups with and without POD. 

 

LC-MS/MS Analysis 

HPLC-MS/MS analysis was conducted using a Shimadzu LC-20AD Prominence 

chromatograph, which featured a binary gradient pump, a cooling autosampler SIL-20AC 

thermostated at 10 °C, and a CTO-10ASvp column oven maintained at 40 °C. A reversed-

phase column octadecylsilyl sorbent ProntoSIL 120-5 C18 AQUA (LLC Econova, 

Novosibirsk, Russia), was employed for the LC separation. The mobile phase A consisted of 

water with 0.1% HCOOH (v/v), while mobile phase B was pure acetonitrile. The elution 

gradient proceeded as follows: from 0 to 2 minutes, the B content was 3%; from 2 to 7 

minutes, it increased to 10%; from 7 to 10 minutes, it reached 90%; from 10 to 12 minutes, it 

was increased to 100% and was maintained until 16.5 minutes. After the run, the column was 

equilibrated for 3.4 minutes with 3% B. The flow rate was 200 μL/min, and a 2 μL sample 
injection volume was used. 

For mass selective detection, a 6500 QTRAP mass spectrometer (AB SCIEX, USA) 

was utilized, equipped with an electrospray ionization source operating in both positive and 

negative modes. The mass spectrometer was set to operate in multiple reaction monitoring 

(MRM) mode for metabolite detection with the following parameters: the ion spray voltages 

(IS) were 5500 V for positive mode and -4500 V for negative mode. The gas dryer 

temperature (TEM) was set at 475°C, collision-induced dissociation gas (CAD) was 

configured as "Medium," and the sprayer gas (GS1), dryer gas (GS2), and curtain gas (CUR) 

were set to 35, 35, and 30 psi, respectively. The declustering potential (DP) was ±93V, the 

entrance potential (EP) was ±10V, and the collision cell exit potential (CXP) was ±20V for 

positive and negative ion modes, respectively. Additionally, the time for polarity switching 

(settling time) was established at 5 ms, and the dwell time was 3 ms for each MRM 

transition. The precursor ion and fragment ion transitions, metabolite names, dwell times, and 

the appropriate collision energies for both positive and negative ion modes were adapted 

from Yuan et al.81, with several metabolite transitions added by our research group. The 

instrument was controlled and data were collected using Analyst 1.6.2 software (AB SCIEX), 

and chromatograms were processed using MultiQuant 2.1 software (AB SCIEX). The 

obtained peak area values were used for following statistical analysis. 

Data Preprocessing 

The raw data were preprocessed to fill in missing values for metabolite content within 

the analyzed samples. In instances where the number of samples with missing values did not 

exceed 5% of the total value number across 39 patients, the median value derived from 

https://clinicaltrials.gov/
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remaining samples was substituted as the metabolite content value. This approach is validated 

by robustness of the median to outliers. The ensuing values were further log-transformed. 

 

Data Analysis 

Statistical Analysis 

The significance of difference between mean metabolite levels in POD and non-POD 

patients was computed using the Mann-Whitney test, implemented in the SciPy package 

v1.8.0 (https://scipy.org/). The multiple hypothesis testing was enacted using the Benjamini-

Yekutieli procedure from the statsmodels Python package v0.13.231 

(https://www.statsmodels.org/stable/index.html). 

 

Genetic Algorithm 

To identify the combinations of metabolites that differ most effectively between POD 

and non-POD patient groups, we employed the genetic algorithm, as described by Lu et al., 

201754. This algorithm was executed through the application of a Python module 

(https://pygad.readthedocs.io). The fitness function was formulated in the following manner: 

(1) an XGBoost classification model (https://xgboost.readthedocs.io/) was constructed 

utilizing the input list of metabolites, (2) the precision of this model was evaluated by a 5-

fold cross-validation methodology, with selection of the minimum accuracy value. The 

function returned the calculated model precision. The XGBoost model was trained with the 

following parameters: n_estimators = 1000, learning_rate = 0.05, and other parameters set to 

their default values. 

 

Denoising Autoencoder (DAE) 

The DAE architecture comprised three fully interconnected layers (input, hidden, and 

output), each utilizing the Rectified Linear Unit (ReLU) activation function. The input and 

output layers contained 210 neurons, which corresponds to the number of metabolites 

analyzed. The hidden layer, depending upon the specific list, contained from 50 to 149 

neurons. The optimizer applied was Adam, with a learning rate of 0.001. The model was 

trained over 20 epochs, with a batch size of 8 and Mean Squared Error (MSE) as the loss 

metric. Data was split into training (80%) and testing (20%) sets. The DAE model was 

implemented using the PyTorch package (https://pytorch.org/). During the training phase, the 

DAE input contained metabolomic profile with noise added to the metabolite concentration 

values. The DAE aimed to encode the input data and predict the original data prior to 

addition of noise. 

 

Generation of Noisy Metabolomic Profile 

A noisy metabolomic profile was generated by introducing a random number, derived 

from a normal distribution to each metabolite concentration value. The formula applied was 

as follows: 

CNn = COn + d·e, 

where CNn denotes the noisy concentration value of the n-th metabolite, COn represents the 

original concentration value of the n-th metabolite, e is a member of a normal distribution 

with the parameters N (Ex = 0, σ = COn), and d is the noise level factor. 

The coefficient d was assigned a value of 0.25 for distinct DAE models. This 

procedure permitted the generation of 500 noisy profiles from a single original metabolomic 

profile. 

 

Identification of the Secondary Metabolomic Markers 

https://scipy.org/
https://www.statsmodels.org/stable/index.html
https://pygad.readthedocs.io/
https://xgboost.readthedocs.io/
https://pytorch.org/
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To explore secondary metabolomic markers, we adopted a technique for anomaly 

detection by employing a denoising autoencoder, as delineated by Sakurada et al., 201449. 

The algorithm comprised the following steps: initially, the denoising autoencoder was trained 

using a set of metabolomic profiles from patients without Postoperative Delirium (non-POD 

group). Subsequently, the trained model was utilized to examine the metabolomic profiles 

pertaining to the POD patients group. Metabolites manifesting the anomalous concentration 

values as per the denoising autoencoder were classified as the secondary metabolic markers. 

To evaluate the anomaly degree of each metabolite in the POD patient group, we 

contrasted the distribution of denoising autoencoder errors when analyzing the POD and non-

POD groups. The error was gauged as the absolute value of the discrepancy between the 

metabolite concentration values supplied to the denoising autoencoder input and those 

procured at the output. Crucially, the original metabolomic profiles, devoid of noise, were 

supplied to the denoising autoencoder input. Disparities between error distributions were 

assessed via the Mann-Whitney test. Data was deemed to contain anomalies if the two 

distributions exhibited statistically significant differences. Multiple hypothesis testing was 

enacted using the False Discovery Rate (FDR) Benjamini-Hochberg procedure. 

The architecture of the denoising autoencoder involves the hidden layer with a lower 

dimensionality than either the input or output layers. It can be hypothesized that the 

manifestation of anomalies in the metabolite concentration data, as identified via the 

denoising autoencoder, is associated with a disruption of relationships (correlation links) 

between metabolites in POD patients. Such disruptions could be linked to dysfunctions in 

metabolic processes, engendering a predisposition to POD. 

 

MetaboAnalyst 

The overrepresentation analysis of KEGG metabolic pathways was evaluated using 

the enrichment analysis instrument implemented in the MetaboAnalyst 5.0 web tool38 

(https://www.metaboanalyst.ca/). 

 

Reconstruction of Gene Networks 

Gene networks reconstruction was carried out using ANDVisio program, which 

serves as a graphical user interface for the ANDSystem cognitive system. Using the 

"Pathway Wizard" module of the ANDVisio program, we reconstructed molecular genetic 

pathways of regulation of identified metabolic pathways enzymes by POD genetic markers. 

Regulatory pathways were built according to five Template types presented in Table 12. 

These Templates include various combinations of molecular genetic interactions, such as 

regulation of gene expression, protein-protein interactions, regulation of protein activity, 

degradation, catalysis, and transport. 

 

Table 12. Templates for molecular genetic pathways of metabolic pathway enzymes 

regulation by POD genetic markers.  

№ Template name Regulatory pathway 

P1 Protein-protein 

interactions 

PODp –protein-protein interaction→ EnzP 

P2 Protein function 

regulation 

PODp –regulation of 

activity/degradation/catalyze/transport→ EnzP 

P3 Expression regulation PODp –expression regulation→ EnzG –expression→ EnzP 

P4 Double expression 

regulation 

PODp –expression regulation→ Hg –expression→ Hp  

–expression regulation→ EnzG –expression→ EnzP 

https://www.metaboanalyst.ca/
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P5 Combined regulatory 

pathway 

PODp –expression regulation→ Hg –expression→ Hp –
regulation of activity/degradation/catalyze/transport→ EnzP 

Abbreviations:  

PODp – POD genetic markers proteins; Hg – human genes; Hp – human proteins; EnzG – 

genes encoding metabolic pathway enzymes; EnzP – metabolic pathway enzymes. 

 

Data availability  

The data is provided with this paper in supplementary information. The source code of 

AIMetabolicMarker is available at https://github.com/LCP-ICG/AIMetabolicMarker. 
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Tables 

Table 1. Analysis of overrepresented KEGG metabolic pathways associated with the set of 

primary metabolomic markers. 

KEGG pathway Total 
Metabolomic 

Markers (Hits) 
p-value FDR 

Pyrimidine metabolism 39 3 0.006 0.256 

Tryptophan metabolism 41 3 0.006 0.256 

Purine metabolism 70 3 0.028 0.616 

 

Table 2. Overrepresented KEGG metabolic pathways for the set of secondary markers 

identified by 100 autoencoder models. 

KEGG Metabolic pathway Total Hits P-value FDR 

beta-Alanine metabolism 21 2 0.006 0.403 

Glycine, serine and threonine 

metabolism 33 3 0.015 0.403 
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Table 3. Overrepresented KEGG metabolic pathways for the set of the secondary markers 

identified by 97 autoencoder models. 

KEGG Metabolic pathway Total Hits P-value FDR 

Glycine, serine and threonine 

metabolism 33 4 2.03E-4 0.0163 

beta-Alanine metabolism 21 3 8.99E-4 0.036 

 

Table 4. Metabolites serving as both the primary and secondary metabolomic markers. 

KEGG Id Metabolite 
Primary marker 

importance 

C00137 Inositol 87 

C00120 Biotin 3 

C01089 3-hydroxybutyric acid 1 

C00318 Carnitine 1 

C00334 Gamma-Aminobutyric acid 1 

C00258 Glyceric acid 1 

C00106 Uracil 1 

C00438 Ureidosuccinic acid 1 

 

Table 5. Overrepresented KEGG metabolic pathways for the combined set of primary and 

secondary metabolomic markers. Metabolites that are primary and secondary markers are 

marked in bold. 

KEGG pathway Total FDR 

Primary Metabolomic 

Markers (Hits) 

Secondary 

Metabolomic 

Markers (Hits) 

Glycine, serine and 

threonine metabolism 33 0.0021 Betaine; Glyceric acid 

L-Serine; Choline; 

Betaine aldehyde; 

Guanidoacetic acid; 

Cystathionine; L-

Threonine; Glyceric 

acid 

Aminoacyl-tRNA 

biosynthesis 48 0.0028 

L-Leucine; L-Tryptophan; 

L-Tyrosine 

L-Histidine; L-Arginine; 

L-Serine; L-Valine; L-

Threonine; L-Proline 

Tryptophan 

metabolism 41 0.0239 

L-Tryptophan; 5-Hydroxy-

L-tryptophan 

Serotonin; 3-

Hydroxyanthranilic acid; 

L-Kynurenine; Acetyl-

CoA 

Arginine biosynthesis 14 0.0351 N-Acetylglutamic acid 

L-Arginine; Citrulline; 

Ornithine 
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Butanoate metabolism 15 0.0372 

3-hydroxybutyric acid; 

Gamma-Aminobutyric 

acid; D-2-Hydroxyglutaric 

acid 

3-hydroxybutyric acid; 

Acetyl-CoA; Gamma-

Aminobutyric acid 

Valine, leucine and 

isoleucine biosynthesis 8 0.0375 L-Leucine L-Threonine; L-Valine 

Arginine and proline 

metabolism 38 0.0375 

Gamma-Aminobutyric 

acid 

L-Arginine; 

Guanidoacetic acid; 

Gamma-Aminobutyric 

acid; Spermine; 

Ornithine; L-Proline 

Pyrimidine 

metabolism 39 0.0376 

Cytidine; Thymine; 

Ureidosuccinic acid; 

Uracil 

Uridine; Ureidosuccinic 

acid; Uracil; 

Deoxyribose 1-

phosphate 

Ubiquinone and other 

terpenoid-quinone 

biosynthesis 9 0.0394 

L-Tyrosine; Homogentisic 

acid Phenyllactic acid 

 

Table 6. Quantitative indicators of POD genetic markers (N1) and their corresponding 

regulated metabolic pathway enzymes (N2) as per regulatory pathway templates. 

KEGG pathway Regulatory pathways 

P1 P2 P3 P4 P5 

N

1 
N2 N1 N2 N1 

N

2 
N1 

N

2 
N1 

N

2 

Glycine, serine, and threonine 

metabolism 
2 3 3 5 3 3 15 13 5 3 

Aminoacyl-tRNA biosynthesis 1 1 0 0 1 2 10 3 5 2 

 

Table 7. Descriptive features of gene network of regulation of lactate metabolic pathway 

enzymes. 

№ KEGG lactate metabolism 

pathways 

Enzymes in the 

metabolic 

pathway 

Regulatory genetic markers 

1 
Glycolysis / 

Gluconeogenesis: hsa00010; 

LDHA APOE, CCL2, GDNF, HMGB1, 

IGF1, IFNG, IL1B, IL2, IL6, 

IL6RA, IL8, IL10, LEP, TLR4, 

TNFA 

 

LDHB 

 

IL1B, S100B, TNFA 

 
2 

HIF-1 signaling pathway: 

hsa04066 
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LDHC, 

LDHAL6A, 

LDHAL6B 

- 

3 
Pyruvate metabolism: 

hsa00620 

GLO2 APOE 

LDHA APOE, CCL2, GDNF, HMGB1, 

IGF1, IFNG, IL1B, IL2, IL6, 

IL6RA, IL8, IL10, LEP, TLR4, 

TNFA 

 

LDHB 

 

IL1B, S100B, TNFA 

 

GLUL, GRHPR, 

HAGH, LDHC, 

LDHD, 

LDHAL6A, 

LDHAL6B 

- 

 

Table 8. Characteristics of gene regulatory network of inositol metabolic pathway enzymes. 

№ KEGG inositol 

metabolism pathways 

Enzymes in the 

metabolic pathway 

Regulatory genetic markers 

1 

Inositol phosphate 

metabolism: 

hsa00562 

IMPA1 S100B 

IMPA2 THIO 

INP4B CCL2, IGF1, IL6, IL6RA, IL8, 

LEP 

INP5K BDNF 

ITPR3 HMGB1, IL6, IL8, LEP, MMP9, 

TLR4 

CDIPT, INP1, INP4A, 

ISYNA1, MIOX, 

MTM1 

- 

2 

Phosphatidylinositol 

signaling system: 

hsa04070 

IMPA1 S100B 

IMPA2 THIO 

INP4B CCL2, IGF1, IL6, IL6RA, IL8, 

LEP 

PLCB2, PLCD1 IL6, IL8, LEP 

PLCG1 PECA1 

PLCG2 TAU 

BPNT2, CDIPT, INP1, 

INP4A, INP5A, 

MTM1, PLCs 

- 

3 
Ascorbate and aldarate 

metabolism: hsa00053 

MIOX - 

 

Table 9. Characteristics of gene regulatory network of GABA metabolic pathway enzymes. 

№ KEGG GABA 

metabolism pathways 

Enzymes in the 

metabolic pathway 

Regulatory genetic markers 

1 
GABAergic synapse: 

hsa04727 

GLSK GDNF, GCR, HMGB1, IGF1, 

IFNG, IL1B, IL1RA, IL2, IL6, 
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IL8, IL10, LEG3, LEP, TLR4 

GLSL GCR, IGF1, IL1RA, IL6, IL8, 

IL10, LEG3, LEP, TLR4 

GAD1 APOE, BDNF, GCR, GDNF, 

IL1B, IL2, IL6 

GAD2 GCR, IL2 

GABT - 

2 
Arginine and proline 

metabolism: hsa00330 

ALDH2 IL2 

ALDH1B1, ALDH3A2, 

ALDH7A1, 

ALDH9A1, CNDP1, 

CNDP2, GATM 

- 

3 
Butanoate metabolism: 

hsa00650 

GAD1 APOE, BDNF, GCR, GDNF, 

IL1B, IL2, IL6 

GAD2 GCR, IL2 

GABT - 

 

Table 10. Characteristics of gene regulatory network of the enzymes in serotonin metabolic 

pathways. 

№ KEGG serotonin 

metabolism pathways 

Enzymes in the 

metabolic pathway 

Regulatory genetic markers 

1 
Serotonergic synapse: 

hsa04726 

TPH1 ALBU, GCR, IGF1, IL1B, IL2, 

IL6, IL10, LEP, THIO, TLR4, 

TNFA 

DDC BDNF, GDNF, IGF1, IL2, LEP 

TPH2 GCR, LEP 

AOFA APOE, TLR4 

AOFB APOE, LEP 

2 
Tryptophan metabolism: 

hsa00380 

I23O1 ALBU, CCL2, GCR, HMGB1, 

IFNG, IL1B, IL2, IL6, IL8, IL10, 

LEG3, LEP, TLR4, TNFA, 

TNR1B 

DDC BDNF, GDNF, IGF1, IL2, LEP 

I23O2 IL2, LEP 

AOFA APOE, TLR4 

AOFB APOE, LEP 

INMT, SNAT - 

 

Table 11. Age and gender characteristics of the patients. 

Group Sex 

(M/F) 

Min. 

age 

Max. 

age 

Avg. 

age 

Media

n 

Standard 

Deviation 

Non-

POD 

11/16 65 75 69.6 70 3.0 

POD 5/7 65 79 69.7 69.5 4.3 
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Table 12. Templates for molecular genetic pathways of metabolic pathway enzymes 

regulation by POD genetic markers.  

№ Template name Regulatory pathway 

P1 Protein-protein 

interactions 

PODp –protein-protein interaction→ EnzP 

P2 Protein function 

regulation 

PODp –regulation of 

activity/degradation/catalyze/transport→ EnzP 

P3 Expression regulation PODp –expression regulation→ EnzG –expression→ EnzP 

P4 Double expression 

regulation 

PODp –expression regulation→ Hg –expression→ Hp  

–expression regulation→ EnzG –expression→ EnzP 

P5 Combined regulatory 

pathway 

PODp –expression regulation→ Hg –expression→ Hp –
regulation of activity/degradation/catalyze/transport→ EnzP 

Abbreviations:  

PODp – POD genetic markers proteins; Hg – human genes; Hp – human proteins; EnzG – 

genes encoding metabolic pathway enzymes; EnzP – metabolic pathway enzymes. 

 

Figure Legends 

Fig. 1. Classification accuracy for distinguishing between postoperative delirium (POD) and 

non-POD patient groups. 

Legend: blue line – classifier (AUC = 0.99), black dashed line – chance level(AUC = 0.5) 

 

Fig. 2. Gene network of regulation of "Glycine, serine, and threonine metabolism" enzymes 

by POD genetic markers. 

Legend: double-strand spiral – Gene; red sphere – Protein; yellow rectangle arrow – activity 

downregulation; yellow triangle arrow – activity upregulation; light blue rectangle arrow – 

degradation downregulation; turquoise triangle arrow – expression; pink rectangle arrow – 

expression downregulation; pink arrow with rhombus – expression regulation; pink triangle 

arrow – expression upregulation; black line – protein-protein interaction; dark blue  arrow 

with rhombus – transport regulation. 

 

Fig. 3. Gene network of regulation of "Aminoacyl-tRNA biosynthesis" metabolic pathway 

enzymes by POD genetic markers. 

Legend: double-strand spiral – Gene; red sphere – Protein; yellow triangle arrow – activity 

upregulation; violet arrow – cleavage; turquoise triangle arrow – expression; pink rectangle 

arrow – expression downregulation; pink arrow with rhombus – expression regulation; pink 

triangle arrow – expression upregulation; black line – protein-protein interaction. The objects 

outlined in red ovals illustrate the participants of the example regulatory pathways within the 

gene network. 

 

Fig. 4. The number of regulated enzymes in KEGG metabolic pathways for each of the POD 

genetic markers. 

Legend: blue bars – enzymes of "Glycine, serine, and threonine metabolism" metabolic 

pathway; orange bars – enzymes of "Aminoacyl-tRNA biosynthesis" metabolic pathway. 

 

Fig. 5. Gene network of regulation of lactate metabolism enzymes by POD genetic markers. 

Legend: double-strand spiral – Gene; red sphere – Protein; yellow triangle arrow – activity 

upregulation; light blue rectangle arrow – degradation downregulation; light blue arrow with 
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rhombus – degradation regulation; light blue triangle arrow – degradation upregulation; 

turquoise triangle arrow – expression; pink arrow with rhombus – expression regulation; 

black line – protein-protein interaction. 

 

Fig. 6. Gene network of regulation of inositol metabolism enzymes by POD genetic markers. 

Legend: double-strand spiral – Gene; red sphere – Protein; yellow arrow with rhombus – 

activity regulation;  yellow triangle arrow – activity upregulation; turquoise triangle arrow – 

expression; pink arrow with rhombus – expression regulation; black line – protein-protein 

interaction. 

 

Fig. 7. Gene network of regulation of GABA metabolism enzymes by POD genetic markers. 

Legend: double-strand spiral – Gene; red sphere – Protein; light blue rectangle arrow – 

degradation downregulation; turquoise triangle arrow – expression; pink arrow with rhombus 

– expression regulation. 

 

Fig. 8. Gene network of regulation of serotonin metabolism enzymes by POD genetic 

markers. 

Legend: double-strand spiral – Gene; red sphere – Protein; yellow arrow with rhombus – 

activity regulation;  yellow triangle arrow – activity upregulation; turquoise triangle arrow – 

expression; pink arrow with rhombus – expression regulation. 



Supplementary Files

This is a list of supplementary �les associated with this preprint. Click to download.

DeliriumSupplementaryTables.xlsx

https://assets.researchsquare.com/files/rs-3848065/v1/612b060c7735dfad9030aa05.xlsx

