1 Choudhury, A., Mukherjee, G. & Mukherjee, S. Chemotherapy vs. Immunotherapy in combating nCOVID19: An update. Human Immunology 82, 649-658 (2021). https://doi.org/https://doi.org/10.1016/j.humimm.2021.05.001
2 Lucas, C. et al. Longitudinal analyses reveal immunological misfiring in severe COVID-19. Nature 584, 463-469 (2020). https://doi.org/10.1038/s41586-020-2588-y
3 McElvaney, O. J. et al. Characterization of the Inflammatory Response to Severe COVID-19 Illness. American Journal of Respiratory and Critical Care Medicine 202, 812-821 (2020). https://doi.org/10.1164/rccm.202005-1583OC
4 Vabret, N. et al. Immunology of COVID-19: Current State of the Science. Immunity 52, 910-941 (2020). https://doi.org/10.1016/j.immuni.2020.05.002
5 Thwaites, R. S. et al. Inflammatory profiles across the spectrum of disease reveal a distinct role for GM-CSF in severe COVID-19. Science Immunology 6, eabg9873 (2021). https://doi.org/doi:10.1126/sciimmunol.abg9873
6 Jarczak, D. & Nierhaus, A. Cytokine Storm—Definition, Causes, and Implications. International Journal of Molecular Sciences 23, 11740 (2022).
7 Gupta, A. et al. Extrapulmonary manifestations of COVID-19. Nature Medicine 26, 1017-1032 (2020). https://doi.org/10.1038/s41591-020-0968-3
8 Hautecloque, G. et al. Multifocal and Microvascular Involvement in Ischemic Stroke During COVID-19: A Cohort Study With Comparison With Non-COVID-19 Stroke. Frontiers in Neurology 12 (2021). https://doi.org/10.3389/fneur.2021.732194
9 Nalbandian, A. et al. Post-acute COVID-19 syndrome. Nature Medicine 27, 601-615 (2021). https://doi.org/10.1038/s41591-021-01283-z
10 Tsang, J. L. Y., Binnie, A. & Fowler, R. A. in Intensive Care Med. (2021).
11 Devaux, C. A., Rolain, J. M. & Raoult, D. ACE2 receptor polymorphism: Susceptibility to SARS-CoV-2, hypertension, multi-organ failure, and COVID-19 disease outcome. J Microbiol Immunol Infect 53, 425-435 (2020). https://doi.org/10.1016/j.jmii.2020.04.015
12 Lee, J. h. Treatment mechanism of immune triad from the repurposing drug against COVID-19. Translational Medicine of Aging 7, 33-45 (2023). https://doi.org/https://doi.org/10.1016/j.tma.2023.06.005
13 Kumar, S. et al. Racial Health Disparity and COVID-19. Journal of Neuroimmune Pharmacology 16, 729-742 (2021). https://doi.org/10.1007/s11481-021-10014-7
14 Shirvaliloo, M. The unfavorable clinical outcome of COVID-19 in smokers is mediated by H3K4me3, H3K9me3 and H3K27me3 histone marks. Epigenomics 14, 153-162 (2022). https://doi.org/10.2217/epi-2021-0476
15 Chlamydas, S., Papavassiliou, A. G. & Piperi, C. Epigenetic mechanisms regulating COVID-19 infection. Epigenetics 16, 263-270 (2021). https://doi.org/10.1080/15592294.2020.1796896
16 Ratajczak, M. Z. et al. SARS-CoV-2 Entry Receptor ACE2 Is Expressed on Very Small CD45− Precursors of Hematopoietic and Endothelial Cells and in Response to Virus Spike Protein Activates the Nlrp3 Inflammasome. Stem Cell Reviews and Reports 17, 266-277 (2021). https://doi.org/10.1007/s12015-020-10010-z
17 Lei, Y. et al. SARS-CoV-2 Spike Protein Impairs Endothelial Function via Downregulation of ACE 2. Circulation Research 128, 1323-1326 (2021). https://doi.org/doi:10.1161/CIRCRESAHA.121.318902
18 Kucia, M. et al. An evidence that SARS-Cov-2/COVID-19 spike protein (SP) damages hematopoietic stem/progenitor cells in the mechanism of pyroptosis in Nlrp3 inflammasome-dependent manner. Leukemia (2021). https://doi.org/10.1038/s41375-021-01332-z
19 Kronstein-Wiedemann, R. et al. SARS-CoV-2 Infects Red Blood Cell Progenitors and Dysregulates Hemoglobin and Iron Metabolism. Stem Cell Reviews and Reports 18, 1809-1821 (2022). https://doi.org/10.1007/s12015-021-10322-8
20 Choudhury, A. & Mukherjee, S. In silico studies on the comparative characterization of the interactions of SARS‐CoV‐2 spike glycoprotein with ACE‐2 receptor homologs and human TLRs. Journal of medical virology 92, 2105-2113 (2020).
21 Choudhury, A., Das, N. C., Patra, R. & Mukherjee, S. In silico analyses on the comparative sensing of SARS-CoV-2 mRNA by the intracellular TLRs of humans. Journal of Medical Virology 93, 2476-2486 (2021). https://doi.org/https://doi.org/10.1002/jmv.26776
22 Patra, R., Chandra Das, N. & Mukherjee, S. Targeting human TLRs to combat COVID-19: A solution? J Med Virol 93, 615-617 (2021). https://doi.org/10.1002/jmv.26387
23 Poltorak, A. et al. Defective LPS Signaling in C3H/HeJ and C57BL/10ScCr Mice: Mutations in <i>Tlr4</i> Gene. Science 282, 2085-2088 (1998). https://doi.org/doi:10.1126/science.282.5396.2085
24 Gonzalez, J. J. I. et al. TLR4 sensing of IsdB of <i>Staphylococcus aureus</i> induces a proinflammatory cytokine response via the NLRP3-caspase-1 inflammasome cascade. mBio 0, e00225-00223 (2023). https://doi.org/doi:10.1128/mbio.00225-23
25 Zhao, Y. et al. SARS-CoV-2 spike protein interacts with and activates TLR41. Cell Research 31, 818-820 (2021). https://doi.org/10.1038/s41422-021-00495-9
26 Manik, M. & Singh, R. K. Role of toll-like receptors in modulation of cytokine storm signaling in SARS-CoV-2-induced COVID-19. Journal of Medical Virology 94, 869-877 (2022). https://doi.org/https://doi.org/10.1002/jmv.27405
27 Frank, M. G. et al. SARS-CoV-2 spike S1 subunit induces neuroinflammatory, microglial and behavioral sickness responses: Evidence of PAMP-like properties. Brain, Behavior, and Immunity 100, 267-277 (2022). https://doi.org/https://doi.org/10.1016/j.bbi.2021.12.007
28 Olajide, O. A., Iwuanyanwu, V. U., Adegbola, O. D. & Al-Hindawi, A. A. SARS-CoV-2 Spike Glycoprotein S1 Induces Neuroinflammation in BV-2 Microglia. Molecular Neurobiology (2021). https://doi.org/10.1007/s12035-021-02593-6
29 Rannikko, E. H., Weber, S. S. & Kahle, P. J. Exogenous α-synuclein induces toll-like receptor 4 dependent inflammatory responses in astrocytes. BMC Neuroscience 16, 57 (2015). https://doi.org/10.1186/s12868-015-0192-0
30 Conte, C. Possible Link between SARS-CoV-2 Infection and Parkinson’s Disease: The Role of Toll-Like Receptor 4. International Journal of Molecular Sciences 22, 7135 (2021).
31 Zeberg, H. & Pääbo, S. The major genetic risk factor for severe COVID-19 is inherited from Neanderthals. Nature 587, 610-612 (2020). https://doi.org/10.1038/s41586-020-2818-3
32 Daly, J. L. et al. Neuropilin-1 is a host factor for SARS-CoV-2 infection. Science 370, 861-865 (2020). https://doi.org/10.1126/science.abd3072
33 Cantuti-Castelvetri, L. et al. Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science 370, 856-860 (2020). https://doi.org/10.1126/science.abd2985
34 Hoffmann, M. et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 181, 271-280.e278 (2020). https://doi.org/https://doi.org/10.1016/j.cell.2020.02.052
35 Mollica, V., Rizzo, A. & Massari, F. The pivotal role of TMPRSS2 in coronavirus disease 2019 and prostate cancer. Future Oncology 16, 2029-2033 (2020). https://doi.org/10.2217/fon-2020-0571
36 Kyrou, I., Randeva, H. S., Spandidos, D. A. & Karteris, E. Not only ACE2—the quest for additional host cell mediators of SARS-CoV-2 infection: Neuropilin-1 (NRP1) as a novel SARS-CoV-2 host cell entry mediator implicated in COVID-19. Signal Transduction and Targeted Therapy 6, 21 (2021). https://doi.org/10.1038/s41392-020-00460-9
37 Hwang, J. Y., Sun, Y., Carroll, C. R., Usherwood, E. J. & D'Orazio, S. E. F. Neuropilin-1 Regulates the Secondary CD8 T Cell Response to Virus Infection. mSphere 4, e00221-00219 (2019). https://doi.org/doi:10.1128/mSphere.00221-19
38 Group, S. C.-G. Genomewide association study of severe Covid-19 with respiratory failure. New England Journal of Medicine 383, 1522-1534 (2020).
39 Li, Y. et al. The MERS-CoV Receptor DPP4 as a Candidate Binding Target of the SARS-CoV-2 Spike. iScience 23, 101160 (2020). https://doi.org/https://doi.org/10.1016/j.isci.2020.101160
40 Kerner, G. & Quintana-Murci, L. The genetic and evolutionary determinants of COVID-19 susceptibility. European Journal of Human Genetics 30, 915-921 (2022). https://doi.org/10.1038/s41431-022-01141-7
41 Zeberg, H. & Pääbo, S. A genomic region associated with protection against severe COVID-19 is inherited from Neandertals. Proceedings of the National Academy of Sciences 118, e2026309118 (2021). https://doi.org/10.1073/pnas.2026309118
42 Zhang, Q. et al. Environmentally-induced <i>mdig</i> contributes to the severity of COVID-19 through fostering expression of SARS-CoV-2 receptor NRPs and glycan metabolism. Theranostics 11, 7970-7983 (2021). https://doi.org/10.7150/thno.62138
43 Zhang, J. et al. Neuropilin-1 mediates lung tissue-specific control of ILC2 function in type 2 immunity. Nature Immunology 23, 237-250 (2022). https://doi.org/10.1038/s41590-021-01097-8
44 Clottu, A. S., Humbel, M., Fluder, N., Karampetsou, M. P. & Comte, D. Innate Lymphoid Cells in Autoimmune Diseases. Front Immunol 12, 789788 (2021). https://doi.org/10.3389/fimmu.2021.789788
45 Spits, H. & Mjösberg, J. Heterogeneity of type 2 innate lymphoid cells. Nature Reviews Immunology 22, 701-712 (2022). https://doi.org/10.1038/s41577-022-00704-5
46 Meininger, I. et al. Tissue-Specific Features of Innate Lymphoid Cells. Trends in Immunology 41, 902-917 (2020). https://doi.org/https://doi.org/10.1016/j.it.2020.08.009
47 Ikutani, M. et al. Prolonged activation of IL-5–producing ILC2 causes pulmonary arterial hypertrophy. JCI Insight 2 (2017). https://doi.org/10.1172/jci.insight.90721
48 Shikhagaie, M. M. et al. Neuropilin-1 Is Expressed on Lymphoid Tissue Residing LTi-like Group 3 Innate Lymphoid Cells and Associated with Ectopic Lymphoid Aggregates. Cell Reports 18, 1761-1773 (2017). https://doi.org/https://doi.org/10.1016/j.celrep.2017.01.063
49 Davies, J. et al. Neuropilin1 as a new potential SARSCoV2 infection mediator implicated in the neurologic features and central nervous system involvement of COVID19. Mol. Med. Rep. 22, 4221-4226 (2020). https://doi.org/10.3892/mmr.2020.11510
50 Khan, M. et al. Visualizing in deceased COVID-19 patients how SARS-CoV-2 attacks the respiratory and olfactory mucosae but spares the olfactory bulb. Cell 184, 5932-5949.e5915 (2021). https://doi.org/10.1016/j.cell.2021.10.027
51 Yong, S. J. Persistent Brainstem Dysfunction in Long-COVID: A Hypothesis. ACS Chemical Neuroscience 12, 573-580 (2021). https://doi.org/10.1021/acschemneuro.0c00793
52 Lucchese, G. et al. Anti-neuronal antibodies against brainstem antigens are associated with COVID-19. eBioMedicine 83, 104211 (2022). https://doi.org/https://doi.org/10.1016/j.ebiom.2022.104211
53 Lee, J. H. et al. COVID-19 Molecular Pathophysiology: Acetylation of Repurposing Drugs. International Journal of Molecular Sciences 23, 13260 (2022).
54 Marini, J. J. & Gattinoni, L. Management of COVID-19 Respiratory Distress. JAMA 323, 2329-2330 (2020). https://doi.org/10.1001/jama.2020.6825
55 Kawano, T. et al. T cell infiltration into the brain triggers pulmonary dysfunction in murine Cryptococcus-associated IRIS. Nature communications 14, 3831 (2023).
56 Dangarembizi, R. & Drummond, R. Immune-related neurodegeneration in the midbrain causes pulmonary dysfunction in murine cryptococcal IRIS. Trends in Neurosciences 46, 1003-1004 (2023). https://doi.org/10.1016/j.tins.2023.09.005
57 Kanwar, B., Lee, C. J. & Lee, J.-H. Specific Treatment Exists for SARS-CoV-2 ARDS. Vaccines 9, 635 (2021).
58 Ferren, M. et al. Hamster organotypic modeling of SARS-CoV-2 lung and brainstem infection. Nature Communications 12, 5809 (2021). https://doi.org/10.1038/s41467-021-26096-z
59 Jacoby, D. B., Xiao, H. Q., Lee, N. H., Chan-Li, Y. & Fryer, A. D. Virus- and interferon-induced loss of inhibitory M2 muscarinic receptor function and gene expression in cultured airway parasympathetic neurons. The Journal of Clinical Investigation 102, 242-248 (1998). https://doi.org/10.1172/JCI1114
60 Balasa, B. et al. Interferon γ (IFN-γ) Is Necessary for the Genesis of Acetylcholine Receptor–induced Clinical Experimental Autoimmune Myasthenia gravis in Mice. Journal of Experimental Medicine 186, 385-391 (1997). https://doi.org/10.1084/jem.186.3.385
61 Kawashima, K., Fujii, T., Moriwaki, Y. & Misawa, H. Critical roles of acetylcholine and the muscarinic and nicotinic acetylcholine receptors in the regulation of immune function. Life Sciences 91, 1027-1032 (2012). https://doi.org/https://doi.org/10.1016/j.lfs.2012.05.006
62 Coquel, F. et al. SAMHD1 acts at stalled replication forks to prevent interferon induction. Nature 557, 57-61 (2018).
63 Stillman, B. Deoxynucleoside triphosphate (dNTP) synthesis and destruction regulate the replication of both cell and virus genomes. Proceedings of the National Academy of Sciences 110, 14120-14121 (2013). https://doi.org/10.1073/pnas.1312901110
64 Bowen, N. E. et al. Structural and functional characterization explains loss of dNTPase activity of the cancer-specific R366C/H mutant SAMHD1 proteins. Journal of Biological Chemistry 297 (2021). https://doi.org/10.1016/j.jbc.2021.101170
65 Oo, A. et al. Elimination of Aicardi–Goutières syndrome protein SAMHD1 activates cellular innate immunity and suppresses SARS-CoV-2 replication. Journal of Biological Chemistry 298 (2022). https://doi.org/10.1016/j.jbc.2022.101635
66 Cingöz, O., Arnow, N. D., Puig Torrents, M. & Bannert, N. Vpx enhances innate immune responses independently of SAMHD1 during HIV-1 infection. Retrovirology 18, 4 (2021). https://doi.org/10.1186/s12977-021-00548-2
67 Lee, D. et al. Inborn errors of OAS–RNase L in SARS-CoV-2–related multisystem inflammatory syndrome in children. Science 379, eabo3627 (2023). https://doi.org/doi:10.1126/science.abo3627
68 Su, J. et al. HIV-2/SIV Vpx targets a novel functional domain of STING to selectively inhibit cGAS–STING-mediated NF-κB signalling. Nature Microbiology 4, 2552-2564 (2019). https://doi.org/10.1038/s41564-019-0585-4
69 Fink, D. L. et al. HIV-2/SIV Vpx antagonises NF-κB activation by targeting p65. Retrovirology 19, 2 (2022). https://doi.org/10.1186/s12977-021-00586-w
70 White, Tommy E. et al. The Retroviral Restriction Ability of SAMHD1, but Not Its Deoxynucleotide Triphosphohydrolase Activity, Is Regulated by Phosphorylation. Cell Host & Microbe 13, 441-451 (2013). https://doi.org/https://doi.org/10.1016/j.chom.2013.03.005
71 Yan, Y., Tang, Y.-d. & Zheng, C. When cyclin-dependent kinases meet viral infections, including SARS-CoV-2. Journal of Medical Virology 94, 2962-2968 (2022). https://doi.org/https://doi.org/10.1002/jmv.27719
72 Gupta, R. K. & Mlcochova, P. Cyclin D3 restricts SARS-CoV-2 envelope incorporation into virions and interferes with viral spread. The EMBO Journal 41, e111653 (2022). https://doi.org/https://doi.org/10.15252/embj.2022111653
73 Tang, C., Ji, X., Wu, L. & Xiong, Y. Impaired dNTPase Activity of SAMHD1 by Phosphomimetic Mutation of Thr-592*♦. Journal of Biological Chemistry 290, 26352-26359 (2015). https://doi.org/https://doi.org/10.1074/jbc.M115.677435
74 Ji, X. et al. Mechanism of allosteric activation of SAMHD1 by dGTP. Nature Structural & Molecular Biology 20, 1304-1309 (2013). https://doi.org/10.1038/nsmb.2692
75 Yu, C. H. et al. Nucleic acid binding by SAMHD1 contributes to the antiretroviral activity and is enhanced by the GpsN modification. Nature Communications 12, 731 (2021). https://doi.org/10.1038/s41467-021-21023-8
76 Roux, A. et al. FOXO1 transcription factor plays a key role in T cell—HIV-1 interaction. PLOS Pathogens 15, e1007669 (2019). https://doi.org/10.1371/journal.ppat.1007669
77 Maelfait, J., Bridgeman, A., Benlahrech, A., Cursi, C. & Rehwinkel, J. Restriction by SAMHD1 Limits cGAS/STING-Dependent Innate and Adaptive Immune Responses to HIV-1. Cell reports 16, 1492-1501 (2016). https://doi.org/10.1016/j.celrep.2016.07.002
78 Rice, G. I. et al. Mutations involved in Aicardi-Goutières syndrome implicate SAMHD1 as regulator of the innate immune response. Nature Genetics 41, 829-832 (2009). https://doi.org/10.1038/ng.373
79 Crow, Y. J. & Manel, N. Aicardi–Goutières syndrome and the type I interferonopathies. Nature Reviews Immunology 15, 429-440 (2015). https://doi.org/10.1038/nri3850
80 Khan, A. & Sergi, C. SAMHD1 as the potential link between SARS-CoV-2 infection and neurological complications. Front. Neurol. 11, 562913 (2020). https://doi.org/10.3389/fneur.2020.562913
81 Kwan, J. Y. Y. et al. Elevation in viral entry genes and innate immunity compromise underlying increased infectivity and severity of COVID-19 in cancer patients. Scientific Reports 11, 4533 (2021). https://doi.org/10.1038/s41598-021-83366-y
82 Chen, S. et al. SAMHD1 suppresses innate immune responses to viral infections and inflammatory stimuli by inhibiting the NF-κB and interferon pathways. Proceedings of the National Academy of Sciences 115, E3798-E3807 (2018).
83 Berri, F. et al. Early plasma interferon-β levels as a predictive marker of COVID-19 severe clinical events in adult patients. J Med Virol 95, e28361 (2023). https://doi.org/10.1002/jmv.28361
84 Pan, P. et al. SARS-CoV-2 N protein promotes NLRP3 inflammasome activation to induce hyperinflammation. Nature Communications 12, 4664 (2021). https://doi.org/10.1038/s41467-021-25015-6
85 Rodrigues, T. S. et al. Inflammasomes are activated in response to SARS-CoV-2 infection and are associated with COVID-19 severity in patients. Journal of Experimental Medicine 218 (2020). https://doi.org/10.1084/jem.20201707
86 Ferreira, A. C. et al. SARS-CoV-2 engages inflammasome and pyroptosis in human primary monocytes. Cell Death Discovery 7, 43 (2021). https://doi.org/10.1038/s41420-021-00428-w
87 Rodrigues, T. S. & Zamboni, D. S. Inflammasome activation by SARS-CoV-2 and its participation in COVID-19 exacerbation. Current Opinion in Immunology 84, 102387 (2023). https://doi.org/https://doi.org/10.1016/j.coi.2023.102387
88 Wang, Y. C. et al. SARS-CoV-2 nucleocapsid protein, rather than spike protein, triggers a cytokine storm originating from lung epithelial cells in patients with COVID-19. Infection (2023). https://doi.org/10.1007/s15010-023-02142-4
89 Ichinohe, T., Yamazaki, T., Koshiba, T. & Yanagi, Y. Mitochondrial protein mitofusin 2 is required for NLRP3 inflammasome activation after RNA virus infection. Proc. Natl. Acad. Sci. U. S. A. 110, 17963-17968 (2013).
90 Han, L. et al. SARS-CoV-2 ORF10 antagonizes STING-dependent interferon activation and autophagy. Journal of Medical Virology 94, 5174-5188 (2022). https://doi.org/https://doi.org/10.1002/jmv.27965
91 Han, L. et al. SARS-CoV-2 ORF9b antagonizes type I and III interferons by targeting multiple components of the RIG-I/MDA-5–MAVS, TLR3–TRIF, and cGAS–STING signaling pathways. Journal of Medical Virology 93, 5376-5389 (2021). https://doi.org/https://doi.org/10.1002/jmv.27050
92 Rui, Y. et al. Unique and complementary suppression of cGAS-STING and RNA sensing-triggered innate immune responses by SARS-CoV-2 proteins. Signal transduction and targeted therapy 6, 123 (2021).
93 Deng, J. et al. SARS-CoV-2 NSP7 inhibits type I and III IFN production by targeting the RIG-I/MDA5, TRIF, and STING signaling pathways. Journal of Medical Virology 95, e28561 (2023). https://doi.org/https://doi.org/10.1002/jmv.28561
94 Gaidt, M. M. et al. The DNA Inflammasome in Human Myeloid Cells Is Initiated by a STING-Cell Death Program Upstream of NLRP3. Cell 171, 1110-1124.e1118 (2017). https://doi.org/https://doi.org/10.1016/j.cell.2017.09.039
95 Lee, J.-h., Choi, S.-h., Lee, Chul J. & Oh, S.-s. Recovery of Dementia Syndrome following Treatment of Brain Inflammation. Dementia and Geriatric Cognitive Disorders Extra 10, 1-12 (2020). https://doi.org/10.1159/000504880
96 Lee, J. H., Lee, C. J., Park, J., Lee, S. J. & Choi, S. H. The Neuroinflammasome in Alzheimer's Disease and Cerebral Stroke. Dement Geriatr Cogn Dis Extra 11, 159-167 (2021). https://doi.org/10.1159/000516074
97 Beckman, D. et al. SARS-CoV-2 infects neurons and induces neuroinflammation in a non-human primate model of COVID-19. Cell Reports 41 (2022). https://doi.org/10.1016/j.celrep.2022.111573
98 Albornoz, E. A. et al. SARS-CoV-2 drives NLRP3 inflammasome activation in human microglia through spike protein. Molecular Psychiatry (2022). https://doi.org/10.1038/s41380-022-01831-0
99 Park, S. et al. The mitochondrial antiviral protein MAVS associates with NLRP3 and regulates its inflammasome activity. J. Immunol. 191, 4358-4366 (2013). https://doi.org/10.4049/jimmunol.1301170
100 Domizio, J. D. et al. The cGAS–STING pathway drives type I IFN immunopathology in COVID-19. Nature 603, 145-151 (2022). https://doi.org/10.1038/s41586-022-04421-w
101 Humphries, F. et al. A diamidobenzimidazole STING agonist protects against SARS-CoV-2 infection. Science Immunology 6, eabi9002 (2021). https://doi.org/doi:10.1126/sciimmunol.abi9002
102 Yum, S., Li, M., Fang, Y. & Chen, Z. J. TBK1 recruitment to STING activates both IRF3 and NF-κB that mediate immune defense against tumors and viral infections. Proceedings of the National Academy of Sciences 118, e2100225118 (2021). https://doi.org/doi:10.1073/pnas.2100225118
103 Cui, S. et al. Nuclear cGAS Functions Non-canonically to Enhance Antiviral Immunity via Recruiting Methyltransferase Prmt5. Cell Reports 33, 108490 (2020). https://doi.org/https://doi.org/10.1016/j.celrep.2020.108490
104 de Oliveira Mann, C. C. & Hopfner, K.-P. Nuclear cGAS: guard or prisoner? The EMBO Journal 40, e108293 (2021). https://doi.org/https://doi.org/10.15252/embj.2021108293
105 Neufeldt, C. J. et al. SARS-CoV-2 infection induces a pro-inflammatory cytokine response through cGAS-STING and NF-κB. Communications biology 5, 45 (2022).
106 Liu, X. et al. SARS-CoV-2 spike protein-induced cell fusion activates the cGAS-STING pathway and the interferon response. Science Signaling 15, eabg8744 (2022). https://doi.org/doi:10.1126/scisignal.abg8744
107 Chen, C. & Xu, P. Cellular functions of cGAS-STING signaling. Trends in Cell Biology 33, 630-648 (2023). https://doi.org/10.1016/j.tcb.2022.11.001
108 Su, J. et al. SARS‐CoV‐2 ORF3a inhibits cGAS‐STING‐mediated autophagy flux and antiviral function. Journal of Medical Virology 95, e28175 (2023).
109 Paul, B. D., Snyder, S. H. & Bohr, V. A. Signaling by cGAS–STING in Neurodegeneration, Neuroinflammation, and Aging. Trends in Neurosciences 44, 83-96 (2021). https://doi.org/https://doi.org/10.1016/j.tins.2020.10.008
110 Fengjuan Li, N. W. Y. Z. Y. L. Y. Z. cGAS- Stimulator of Interferon Genes Signaling in Central Nervous System Disorders. Aging and disease 12, 1658-1674 (2021).
111 Örd, M., Faustova, I. & Loog, M. The sequence at Spike S1/S2 site enables cleavage by furin and phospho-regulation in SARS-CoV2 but not in SARS-CoV1 or MERS-CoV. Scientific reports 10, 16944 (2020).
112 Eisfeld, H. S. et al. Viral Glycoproteins Induce NLRP3 Inflammasome Activation and Pyroptosis in Macrophages. Viruses 13, 2076 (2021).
113 Sergi, C. M. & Chiu, B. Targeting NLRP3 inflammasome in an animal model for Coronavirus Disease 2019 (COVID-19) caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Journal of Medical Virology 93, 669-670 (2021). https://doi.org/https://doi.org/10.1002/jmv.26461
114 Montezano, A. C. et al. SARS-CoV-2 spike protein induces endothelial inflammation via ACE2 independently of viral replication. Scientific Reports 13, 14086 (2023). https://doi.org/10.1038/s41598-023-41115-3
115 Perez-Miller, S. et al. Novel Compounds Targeting Neuropilin Receptor 1 with Potential To Interfere with SARS-CoV-2 Virus Entry. ACS Chemical Neuroscience 12, 1299-1312 (2021). https://doi.org/10.1021/acschemneuro.0c00619
116 Shirato, K. & Kizaki, T. SARS-CoV-2 spike protein S1 subunit induces pro-inflammatory responses via toll-like receptor 4 signaling in murine and human macrophages. Heliyon 7, e06187 (2021). https://doi.org/https://doi.org/10.1016/j.heliyon.2021.e06187
117 Theobald, S. J. et al. Long-lived macrophage reprogramming drives spike protein-mediated inflammasome activation in COVID-19. EMBO Molecular Medicine 13, e14150 (2021). https://doi.org/https://doi.org/10.15252/emmm.202114150
118 Liu, X. et al. SARS-CoV-2 spike protein–induced cell fusion activates the cGAS-STING pathway and the interferon response. Science signaling 15, eabg8744 (2022).
119 Ren, H. et al. Micronucleus production, activation of DNA damage response and cGAS-STING signaling in syncytia induced by SARS-CoV-2 infection. Biology Direct 16, 20 (2021). https://doi.org/10.1186/s13062-021-00305-7
120 Scully, M. et al. Pathologic Antibodies to Platelet Factor 4 after ChAdOx1 nCoV-19 Vaccination. New England Journal of Medicine 384, 2202-2211 (2021). https://doi.org/10.1056/NEJMoa2105385
121 Cai, Y. et al. Distinct conformational states of SARS-CoV-2 spike protein. Science 369, 1586-1592 (2020). https://doi.org/doi:10.1126/science.abd4251
122 Nyström, S. & Hammarström, P. Amyloidogenesis of SARS-CoV-2 Spike Protein. Journal of the American Chemical Society 144, 8945-8950 (2022). https://doi.org/10.1021/jacs.2c03925
123 Prabhakaran, M. et al. Adjuvanted SARS-CoV-2 spike protein vaccination elicits long-lived plasma cells in nonhuman primates. Science Translational Medicine 16, eadd5960 (2024). https://doi.org/doi:10.1126/scitranslmed.add5960
124 Sahin, U. et al. BNT162b2 vaccine induces neutralizing antibodies and poly-specific T cells in humans. Nature 595, 572-577 (2021). https://doi.org/10.1038/s41586-021-03653-6
125 Tao, K. et al. The biological and clinical significance of emerging SARS-CoV-2 variants. Nature Reviews Genetics 22, 757-773 (2021).
126 Yao, L. et al. Omicron subvariants escape antibodies elicited by vaccination and BA. 2.2 infection. The Lancet Infectious Diseases 22, 1116-1117 (2022).
127 Tyrkalska, S. D. et al. Differential proinflammatory activities of Spike proteins of SARS-CoV-2 variants of concern. Science Advances 8, eabo0732 (2022). https://doi.org/doi:10.1126/sciadv.abo0732
128 Idrees, D. & Kumar, V. SARS-CoV-2 spike protein interactions with amyloidogenic proteins: Potential clues to neurodegeneration. Biochemical and Biophysical Research Communications 554, 94-98 (2021). https://doi.org/https://doi.org/10.1016/j.bbrc.2021.03.100
129 Young, M. J., O'Hare, M., Matiello, M. & Schmahmann, J. D. Creutzfeldt-Jakob disease in a man with COVID-19: SARS-CoV-2-accelerated neurodegeneration? Brain, Behavior, and Immunity 89, 601-603 (2020). https://doi.org/https://doi.org/10.1016/j.bbi.2020.07.007
130 Chakrabarti, S. S. et al. Rapidly Progressive Dementia with Asymmetric Rigidity Following ChAdOx1 nCoV-19 Vaccination. Aging and disease, 0- (2021). https://doi.org/10.14336/ad.2021.1102
131 Schultz, N. H. et al. Thrombosis and thrombocytopenia after ChAdOx1 nCoV-19 vaccination. New England journal of medicine 384, 2124-2130 (2021).
132 Szebeni, J. et al. Applying lessons learned from nanomedicines to understand rare hypersensitivity reactions to mRNA-based SARS-CoV-2 vaccines. Nature Nanotechnology 17, 337-346 (2022). https://doi.org/10.1038/s41565-022-01071-x
133 Diaz, G. A. et al. Myocarditis and Pericarditis After Vaccination for COVID-19. JAMA 326, 1210-1212 (2021). https://doi.org/10.1001/jama.2021.13443
134 Troili, F. et al. Perivascular unit: this must be the place. the anatomical crossroad between the immune, vascular and nervous system. Front. Neuroanat. 14, 17 (2020). https://doi.org/10.3389/fnana.2020.00017
135 Baig, A. M. Computing the effects of SARS-CoV-2 on respiration regulatory mechanisms in COVID-19. ACS Chem. Neurosci. 11, 2416-2421 (2020). https://doi.org/10.1021/acschemneuro.0c00349
136 Dhont, S., Derom, E., Van Braeckel, E., Depuydt, P. & Lambrecht, B. N. The pathophysiology of ‘happy’ hypoxemia in COVID-19. Respir. Res. 21, 198 (2020). https://doi.org/10.1186/s12931-020-01462-5
137 Ortega-de San Luis, C., Pezzoli, M., Urrieta, E. & Ryan, T. J. Engram cell connectivity as a mechanism for information encoding and memory function. Current Biology 33, 5368-5380.e5365 (2023). https://doi.org/10.1016/j.cub.2023.10.074
138 Josselyn, S. A. & Tonegawa, S. Memory engrams: Recalling the past and imagining the future. Science 367 (2020). https://doi.org/10.1126/science.aaw4325
139 Koren, T. et al. Insular cortex neurons encode and retrieve specific immune responses. Cell 184, 5902-5915.e5917 (2021). https://doi.org/10.1016/j.cell.2021.10.013
140 Gogolla, N. The brain remembers where and how inflammation struck. Cell 184, 5851-5853 (2021). https://doi.org/10.1016/j.cell.2021.11.002
141 Hernandez-Lopez, J. M. et al. Neuronal progenitors of the dentate gyrus express the SARS-CoV-2 cell receptor during migration in the developing human hippocampus. Cell Mol Life Sci 80, 140 (2023). https://doi.org/10.1007/s00018-023-04787-8
142 Seki, T. et al. Distinctive Population Of<i>Gfap</I>-Expressing Neural Progenitors Arising Around the Dentate Notch Migrate and Form the Granule Cell Layer in the Developing Hippocampus. The Journal of Comparative Neurology (2013). https://doi.org/10.1002/cne.23460
143 Radic, T. et al. Time-Lapse Imaging Reveals Highly Dynamic Structural Maturation of Postnatally Born Dentate Granule Cells in Organotypic Entorhino-Hippocampal Slice Cultures. Scientific Reports (2017). https://doi.org/10.1038/srep43724
144 Zhang, L. et al. SARS-CoV-2 crosses the blood–brain barrier accompanied with basement membrane disruption without tight junctions alteration. Signal Transduction and Targeted Therapy 6, 337 (2021). https://doi.org/10.1038/s41392-021-00719-9
145 Yang, R.-C. et al. SARS-CoV-2 productively infects human brain microvascular endothelial cells. Journal of Neuroinflammation 19, 149 (2022). https://doi.org/10.1186/s12974-022-02514-x
146 Schwabenland, M. et al. Deep spatial profiling of human COVID-19 brains reveals neuroinflammation with distinct microanatomical microglia-T-cell interactions. Immunity 54, 1594-1610.e1511 (2021). https://doi.org/10.1016/j.immuni.2021.06.002
147 Sepehrinezhad, A., Gorji, A. & Sahab Negah, S. SARS-CoV-2 may trigger inflammasome and pyroptosis in the central nervous system: a mechanistic view of neurotropism. Inflammopharmacology (2021). https://doi.org/10.1007/s10787-021-00845-4
148 Lee, M.-H. et al. Microvascular injury in the brains of patients with Covid-19. N. Engl. J. Med. 384, 481-483 (2020). https://doi.org/10.1056/nejmc2033369
149 Yachou, Y., El Idrissi, A., Belapasov, V. & Ait Benali, S. Neuroinvasion, neurotropic, and neuroinflammatory events of SARS-CoV-2: understanding the neurological manifestations in COVID-19 patients. Neurol. Sci. 41, 2657-2669 (2020). https://doi.org/10.1007/s10072-020-04575-3
150 Finsterer, J. & Scorza, F. A. Clinical and Pathophysiologic Spectrum of Neuro-COVID. Molecular Neurobiology 58, 3787-3791 (2021). https://doi.org/10.1007/s12035-021-02383-0
151 Vijay, K. Toll-like receptors in immunity and inflammatory diseases: Past, present, and future. International immunopharmacology 59, 391-412 (2018).
152 Fu, J. et al. Expressions and significances of the angiotensin-converting enzyme 2 gene, the receptor of SARS-CoV-2 for COVID-19. Molecular biology reports, 1 (2020).
153 Bar-On, L., Dekel, H., Aftalion, M., Chitlaru, T. & Erez, N. Essential role for Batf3-dependent dendritic cells in regulating CD8 T-cell response during SARS-CoV-2 infection. PLOS ONE 18, e0294176 (2023). https://doi.org/10.1371/journal.pone.0294176
154 Norden, D. M., Trojanowski, P. J., Villanueva, E., Navarro, E. & Godbout, J. P. Sequential activation of microglia and astrocyte cytokine expression precedes increased iba-1 or GFAP immunoreactivity following systemic immune challenge. Glia 64, 300-316 (2016). https://doi.org/https://doi.org/10.1002/glia.22930
155 Tamari, M. et al. Sensory neurons promote immune homeostasis in the lung. Cell 187, 44-61.e17 (2024). https://doi.org/10.1016/j.cell.2023.11.027
156 Doobay, M. F. et al. Differential expression of neuronal ACE2 in transgenic mice with overexpression of the brain renin-angiotensin system. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 292, R373-R381 (2007). https://doi.org/10.1152/ajpregu.00292.2006
157 Shahbaz, M. A. et al. Human-derived air–liquid interface cultures decipher Alzheimer’s disease–SARS-CoV-2 crosstalk in the olfactory mucosa. Journal of Neuroinflammation 20, 299 (2023). https://doi.org/10.1186/s12974-023-02979-4
158 Lee, J. H., Kanwar, B., Lee, C. J., Sergi, C. & Coleman, M. D. Dapsone is an anticatalysis for Alzheimer's disease exacerbation. iScience 25 (2022). https://doi.org/10.1016/j.isci.2022.104274
159 Lee, J. H. et al. Bronchitis, COPD, and pneumonia after viral endemic of patients with leprosy on Sorok Island in South Korea. Naunyn-Schmiedeberg's Archives of Pharmacology (2023). https://doi.org/10.1007/s00210-023-02407-7
160 Mudd, P. A. et al. Distinct inflammatory profiles distinguish COVID-19 from influenza with limited contributions from cytokine storm. Science Advances 6, eabe3024 (2020). https://doi.org/doi:10.1126/sciadv.abe3024
161 Monneret, G. et al. COVID-19: What type of cytokine storm are we dealing with? Journal of Medical Virology 93, 197-198 (2021). https://doi.org/https://doi.org/10.1002/jmv.26317
162 Yoon Go-woon , E.-J. J., Seon-Joo Lee, Sungjin Wang, Park Young-jun* Public Health Weekly Report 15, 1182-1185 (2022).
163 Hwang, S. G. & Park, H. An analysis on prescribing patterns of Alzheimer's dementia treatment and choline alfoscerate using HIRA claims data. Korean Journal of Clinical Pharmacy 29, 1-8 (2019).
164 Shim, J. A. P. E. K. R. K. L. K. H. S. M. R. K. D. The Suspected Coronavirus Disease 2019 Reinfection Cases and Vaccine Effectiveness, The Republic of Korea. Public Health Weekly Report 16, 1504-1520 (2023). https://doi.org/10.56786/PHWR.2023.16.44.2
165 Horkowitz, A. P. et al. Acetylcholine Regulates Pulmonary Pathology During Viral Infection and Recovery. ImmunoTargets and Therapy 9, 333-350 (2020). https://doi.org/10.2147/ITT.S279228
166 Axenhus, M., Frederiksen, K. S., Zhou, R. Z., Waldemar, G. & Winblad, B. The impact of the COVID-19 pandemic on mortality in people with dementia without COVID-19: a systematic review and meta-analysis. BMC Geriatrics 22, 878 (2022). https://doi.org/10.1186/s12877-022-03602-6
167 Chen, R. et al. Excess Mortality With Alzheimer Disease and Related Dementias as an Underlying or Contributing Cause During the COVID-19 Pandemic in the US. JAMA Neurology (2023). https://doi.org/10.1001/jamaneurol.2023.2226
168 Honda, K. & Littman, D. R. The microbiota in adaptive immune homeostasis and disease. Nature 535, 75-84 (2016). https://doi.org/10.1038/nature18848
169 Erttmann, S. F. et al. The gut microbiota prime systemic antiviral immunity via the cGAS-STING-IFN-I axis. Immunity 55, 847-861.e810 (2022). https://doi.org/10.1016/j.immuni.2022.04.006
170 Gabanyi, I. et al. Bacterial sensing via neuronal Nod2 regulates appetite and body temperature. Science 376, eabj3986 (2022).
171 Liu, H., Wang, F., Cao, Y., Dang, Y. & Ge, B. The multifaceted functions of cGAS. Journal of Molecular Cell Biology (2022). https://doi.org/10.1093/jmcb/mjac031
172 Hu, C. et al. Gut microbiota–derived short-chain fatty acids regulate group 3 innate lymphoid cells in HCC. Hepatology n/a https://doi.org/https://doi.org/10.1002/hep.32449
173 Moon, C. Fighting COVID-19 exhausts T cells. Nature Reviews Immunology 20, 277-277 (2020). https://doi.org/10.1038/s41577-020-0304-7
174 Heidel, F. & Hochhaus, A. (Nature Publishing Group, 2020).
175 Yao, Y. et al. Antigen-specific CD8+ T cell feedback activates NLRP3 inflammasome in antigen-presenting cells through perforin. Nature Communications 8, 15402 (2017). https://doi.org/10.1038/ncomms15402
176 Littera, R. et al. Natural killer-cell immunoglobulin-like receptors trigger differences in immune response to SARS-CoV-2 infection. PLOS ONE 16, e0255608 (2021). https://doi.org/10.1371/journal.pone.0255608
177 Augusto, D. G. et al. A common allele of HLA is associated with asymptomatic SARS-CoV-2 infection. Nature (2023). https://doi.org/10.1038/s41586-023-06331-x
178 Meyerowitz, E. A., Richterman, A., Bogoch, I. I., Low, N. & Cevik, M. Towards an accurate and systematic characterisation of persistently asymptomatic infection with SARS-CoV-2. The Lancet Infectious Diseases 21, e163-e169 (2021). https://doi.org/10.1016/S1473-3099(20)30837-9
179 Oran, D. P. & Topol, E. J. Prevalence of Asymptomatic SARS-CoV-2 Infection. Annals of Internal Medicine 173, 362-367 (2020). https://doi.org/10.7326/M20-3012
180 Zhan, Y. et al. The binding profile of SARS-CoV-2 with human leukocyte antigen polymorphisms reveals critical alleles involved in immune evasion. Journal of Medical Virology 95, e29113 (2023). https://doi.org/https://doi.org/10.1002/jmv.29113
181 Sefik, E. et al. Inflammasome activation in infected macrophages drives COVID-19 pathology. Nature (2022). https://doi.org/10.1038/s41586-022-04802-1
182 Roy, E. R. et al. Concerted type I interferon signaling in microglia and neural cells promotes memory impairment associated with amyloid β plaques. Immunity 55, 879-894.e876 (2022). https://doi.org/10.1016/j.immuni.2022.03.018
183 Manry, J. et al. The risk of COVID-19 death is much greater and age dependent with type I IFN autoantibodies. Proceedings of the National Academy of Sciences 119, e2200413119 (2022). https://doi.org/doi:10.1073/pnas.2200413119
184 Osborne, T. F. et al. Association of mortality and aspirin prescription for COVID-19 patients at the Veterans Health Administration. PloS one 16, e0246825 (2021).
185 Panda, R. et al. A functionally distinct neutrophil landscape in severe COVID-19 reveals opportunities for adjunctive therapies. JCI Insight 7 (2022). https://doi.org/10.1172/jci.insight.152291
186 Hoertel, N. et al. Dexamethasone use and mortality in hospitalized patients with coronavirus disease 2019: A multicentre retrospective observational study. British Journal of Clinical Pharmacology 87, 3766-3775 (2021). https://doi.org/https://doi.org/10.1111/bcp.14784
187 Codd, A. S. et al. Neutrophilia, lymphopenia and myeloid dysfunction: A living review of the quantitative changes to innate and adaptive immune cells which define COVID-19 pathology. Oxford open immunology 2, iqab016 (2021).
188 Higaki, A. et al. Predictive value of neutrophil-to-lymphocyte ratio for the fatality of COVID-19 patients complicated with cardiovascular diseases and/or risk factors. Scientific reports 12, 1-9 (2022).
189 Alsalman, A., Al-Mterin, M. A. & Elkord, E. Role of T Regulatory Cells and Myeloid-Derived Suppressor Cells in COVID-19. Journal of Immunology Research 2022 (2022).
190 Perfilyeva, Y. V. et al. Myeloid-derived suppressor cells in COVID-19: A review. Clinical Immunology, 109024 (2022).
191 Schrijver, I. T. et al. COVID‐19 rapidly increases MDSCs and prolongs innate immune dysfunctions. European Journal of Immunology (2022).
192 Kanwar, B. A., Khattak, A., Balentine, J., Lee, J. H. & Kast, R. E. Benefits of Using Dapsone in Patients Hospitalized with COVID-19. Vaccines 10, 195 (2022).
193 Kanwar, B., Khattak, A. & Kast, R. E. Dapsone Lowers Neutrophil to Lymphocyte Ratio and Mortality in COVID-19 Patients Admitted to the ICU. International Journal of Molecular Sciences 23, 15563 (2022).
194 Zhang, F.-R. et al. HLA-B*13:01 and the Dapsone Hypersensitivity Syndrome. New England Journal of Medicine 369, 1620-1628 (2013). https://doi.org/10.1056/NEJMoa1213096
195 Almutairi, M. et al. Activation of Human CD8+ T Cells with Nitroso Dapsone–Modified HLA-B*13:01–Binding Peptides. The Journal of Immunology 210, 1031-1042 (2023). https://doi.org/10.4049/jimmunol.2200531
196 Wittgenstein, L. Wittgenstein'S Tractatus Logico-philosophicus. (Cambridge Scholars Publishing., 2021).
197 Vaduganathan, M. et al. Renin–angiotensin–aldosterone system inhibitors in patients with Covid-19. New England Journal of Medicine 382, 1653-1659 (2020).
198 Jurgens, H. A., Amancherla, K. & Johnson, R. W. Influenza infection induces neuroinflammation, alters hippocampal neuron morphology, and impairs cognition in adult mice. Journal of Neuroscience 32, 3958-3968 (2012).
199 Tanaka, N., Cortese, G. P., Barrientos, R. M., Maier, S. F. & Patterson, S. L. Aging and an immune challenge interact to produce prolonged, but not permanent, reductions in hippocampal L-LTP and mBDNF in a rodent model with features of delirium. Eneuro 5 (2018).
200 Sparkman, N. L., Buchanan, J. B., Dos Santos, N. L., Johnson, R. W. & Burton, M. D. Aging sensitizes male mice to cognitive dysfunction induced by central HIV-1 gp120. Experimental gerontology 126, 110694 (2019).
201 Muscat, S. M. & Barrientos, R. M. The Perfect Cytokine Storm: How Peripheral Immune Challenges Impact Brain Plasticity & Memory Function in Aging. Brain Plasticity 7, 47-60 (2021). https://doi.org/10.3233/BPL-210127
202 Boldrini, M., Canoll, P. D. & Klein, R. S. How COVID-19 Affects the Brain. JAMA Psychiatry
203 Franzolin, E., Salata, C., Bianchi, V. & Rampazzo, C. The Deoxynucleoside Triphosphate Triphosphohydrolase Activity of SAMHD1 Protein Contributes to the Mitochondrial DNA Depletion Associated with Genetic Deficiency of Deoxyguanosine Kinase *. Journal of Biological Chemistry 290, 25986-25996 (2015). https://doi.org/10.1074/jbc.M115.675082
204 Vora, S. M., Lieberman, J. & Wu, H. Inflammasome activation at the crux of severe COVID-19. Nature Reviews Immunology 21, 694-703 (2021). https://doi.org/10.1038/s41577-021-00588-x
205 Aarreberg, L. D. et al. Interleukin-1β Induces mtDNA Release to Activate Innate Immune Signaling via cGAS-STING. Molecular Cell 74, 801-815.e806 (2019). https://doi.org/https://doi.org/10.1016/j.molcel.2019.02.038
206 Bolton, K. L. et al. Clonal hematopoiesis is associated with risk of severe Covid-19. Nature Communications 12, 5975 (2021). https://doi.org/10.1038/s41467-021-26138-6
207 Hammond, D. & Loghavi, S. Clonal haematopoiesis of emerging significance. Pathology 53, 300-311 (2021). https://doi.org/https://doi.org/10.1016/j.pathol.2021.02.005
208 Pardi, N. et al. Expression kinetics of nucleoside-modified mRNA delivered in lipid nanoparticles to mice by various routes. Journal of Controlled Release 217, 345-351 (2015).
209 Bahl, K. et al. Preclinical and clinical demonstration of immunogenicity by mRNA vaccines against H10N8 and H7N9 influenza viruses. Molecular Therapy 25, 1316-1327 (2017).
210 Sahin, U. et al. BNT162b2 vaccine induces neutralizing antibodies and poly-specific T cells in humans. Nature, 1-6 (2021).
211 Cho, A. et al. Anti-SARS-CoV-2 receptor-binding domain antibody evolution after mRNA vaccination. Nature (2021). https://doi.org/10.1038/s41586-021-04060-7
212 Reuters. in Reuters (2021 Guardian News & Media Limited or its affiliated companies, The Guardian, Kings Place, 90 York Way, London, N1 9GU, United Kingdom., 2021).
213 Vojdani, A., Vojdani, E. & Kharrazian, D. Reaction of human monoclonal antibodies to SARS-CoV-2 proteins with tissue antigens: Implications for autoimmune diseases. Frontiers in Immunology 11, 3679 (2021).
214 Song, E. et al. Neuroinvasion of SARS-CoV-2 in human and mouse brain. J. Exp. Med. 218, e20202135 (2021). https://doi.org/10.1084/jem.20202135
215 Koike, K. et al. Danger perception and stress response through an olfactory sensor for the bacterial metabolite hydrogen sulfide. Neuron 109, 2469-2484.e2467 (2021). https://doi.org/10.1016/j.neuron.2021.05.032
216 Dai, J. et al. Acetylation Blocks cGAS Activity and Inhibits Self-DNA-Induced Autoimmunity. Cell 176, 1447-1460.e1414 (2019). https://doi.org/10.1016/j.cell.2019.01.016
217 Eastman, J. J. et al. Group 2 innate lymphoid cells are recruited to the nasal mucosa in patients with aspirin-exacerbated respiratory disease. Journal of Allergy and Clinical Immunology 140, 101-108.e103 (2017). https://doi.org/https://doi.org/10.1016/j.jaci.2016.11.023
218 Lee, J.-h., An, H. K., Sohn, M.-G., Kivela, P. & Oh, S. 4,4′-Diaminodiphenyl Sulfone (DDS) as an Inflammasome Competitor. International Journal of Molecular Sciences 21, 5953 (2020).
219 Chakraborty, A., Panda, A. K., Ghosh, R. & Biswas, A. DNA minor groove binding of a well known anti-mycobacterial drug dapsone: a spectroscopic, viscometric and molecular docking study. Arch. Biochem. Biophys. 665, 107-113 (2019). https://doi.org/10.1016/j.abb.2019.03.001
220 Cho, S. C. et al. Protective effect of 4,4'-diaminodiphenylsulfone against paraquat-induced mouse lung injury. Exp Mol Med 43, 525-537 (2011). https://doi.org/10.3858/emm.2011.43.9.060
221 Mahale, A. et al. Dapsone prolong delayed excitotoxic neuronal cell death by interacting with proapoptotic/survival signaling proteins. J Stroke Cerebrovasc Dis 29, 104848 (2020). https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.104848
222 Rashidian, A. et al. Dapsone reduced acetic acid-induced inflammatory response in rat colon tissue through inhibition of NF-kB signaling pathway. Immunopharmacol Immunotoxicol 41, 607-613 (2019). https://doi.org/10.1080/08923973.2019.1678635
223 Mohammad Jafari, R. et al. Dapsone Ameliorates Colitis through TLR4/NF-kB Pathway in TNBS Induced Colitis Model in Rat. Archives of Medical Research 52, 595-602 (2021). https://doi.org/https://doi.org/10.1016/j.arcmed.2021.03.005
224 Yousefi-Manesh, H. et al. Protective effect of dapsone against bleomycin-induced lung fibrosis in rat. Experimental and Molecular Pathology 124, 104737 (2022). https://doi.org/https://doi.org/10.1016/j.yexmp.2021.104737
225 Claman, H. N. Corticosteroids and lymphoid cells. New England Journal of Medicine 287, 388-397 (1972).
226 Nagakumar, P. et al. Pulmonary type-2 innate lymphoid cells in paediatric severe asthma: phenotype and response to steroids. European Respiratory Journal 54, 1801809 (2019). https://doi.org/10.1183/13993003.01809-2018
227 Liu, S. et al. Steroid resistance of airway type 2 innate lymphoid cells from patients with severe asthma: The role of thymic stromal lymphopoietin. Journal of Allergy and Clinical Immunology 141, 257-268.e256 (2018). https://doi.org/10.1016/j.jaci.2017.03.032