1 Paik, J. M. et al. Mortality Related to Nonalcoholic Fatty Liver Disease Is Increasing in the United States. Hepatol Commun3, 1459-1471, doi:10.1002/hep4.1419 (2019).
2 Younossi, Z. M. et al. Burden of Illness and Economic Model for Patients With Nonalcoholic Steatohepatitis in the United States. Hepatology69, 564-572, doi:10.1002/hep.30254 (2019).
3 Younossi, Z. et al. Global Perspectives on Nonalcoholic Fatty Liver Disease and Nonalcoholic Steatohepatitis. Hepatology69, 2672-2682, doi:10.1002/hep.30251 (2019).
4 Friedman, S. L., Neuschwander-Tetri, B. A., Rinella, M. & Sanyal, A. J. Mechanisms of NAFLD development and therapeutic strategies. Nat Med24, 908-922, doi:10.1038/s41591-018-0104-9 (2018).
5 Kanwal, F. et al. Risk of Hepatocellular Cancer in Patients With Non-Alcoholic Fatty Liver Disease. Gastroenterology155, 1828-1837 e1822, doi:10.1053/j.gastro.2018.08.024 (2018).
6 Cholankeril, G. et al. Temporal Trends Associated With the Rise in Alcoholic Liver Disease-related Liver Transplantation in the United States. Transplantation103, 131-139, doi:10.1097/TP.0000000000002471 (2019).
7 Younossi, Z. M. et al. Obeticholic acid for the treatment of non-alcoholic steatohepatitis: interim analysis from a multicentre, randomised, placebo-controlled phase 3 trial. Lancet394, 2184-2196, doi:10.1016/S0140-6736(19)33041-7 (2019).
8 Dowden, H. & Munro, J. Trends in clinical success rates and therapeutic focus. Nat Rev Drug Discov18, 495-496, doi:10.1038/d41573-019-00074-z (2019).
9 Morgan, P. et al. Impact of a five-dimensional framework on R&D productivity at AstraZeneca. Nat Rev Drug Discov17, 167-181, doi:10.1038/nrd.2017.244 (2018).
10 Hwang, T. J. et al. Failure of Investigational Drugs in Late-Stage Clinical Development and Publication of Trial Results. JAMA internal medicine176, 1826-1833, doi:10.1001/jamainternmed.2016.6008 (2016).
11 Fogel, D. B. Factors associated with clinical trials that fail and opportunities for improving the likelihood of success: A review. Contemp Clin Trials Commun11, 156-164, doi:10.1016/j.conctc.2018.08.001 (2018).
12 Peon, A., Naulaerts, S. & Ballester, P. J. Predicting the Reliability of Drug-target Interaction Predictions with Maximum Coverage of Target Space. Sci Rep7, 3820, doi:10.1038/s41598-017-04264-w (2017).
13 Jahchan, N. S. et al. A drug repositioning approach identifies tricyclic antidepressants as inhibitors of small cell lung cancer and other neuroendocrine tumors. Cancer discovery3, 1364-1377, doi:10.1158/2159-8290.CD-13-0183 (2013).
14 Dudley, J. T. et al. Computational repositioning of the anticonvulsant topiramate for inflammatory bowel disease. Sci Transl Med3, 96ra76, doi:10.1126/scitranslmed.3002648 (2011).
15 Talevi, A. & Bellera, C. L. Challenges and opportunities with drug repurposing: finding strategies to find alternative uses of therapeutics. Expert opinion on drug discovery15, 397-401, doi:10.1080/17460441.2020.1704729 (2020).
16 Wooden, B., Goossens, N., Hoshida, Y. & Friedman, S. L. Using Big Data to Discover Diagnostics and Therapeutics for Gastrointestinal and Liver Diseases. Gastroenterology152, 53-67 e53, doi:10.1053/j.gastro.2016.09.065 (2017).
17 Bredenoord, A. J. Lesogaberan, a GABA(B) agonist for the potential treatment of gastroesophageal reflux disease. IDrugs12, 576-584 (2009).
18 Boeckxstaens, G. E. et al. Effects of lesogaberan on reflux and lower esophageal sphincter function in patients with gastroesophageal reflux disease. Gastroenterology139, 409-417, doi:10.1053/j.gastro.2010.04.051 (2010).
19 Miner, P. B., Jr., Silberg, D. G., Ruth, M., Miller, F. & Pandolfino, J. Dose-dependent effects of lesogaberan on reflux measures in patients with refractory gastroesophageal reflux disease: a randomized, placebo-controlled study. BMC Gastroenterol14, 188, doi:10.1186/1471-230X-14-188 (2014).
20 Sirota, M. et al. Discovery and preclinical validation of drug indications using compendia of public gene expression data. Sci Transl Med3, 96ra77, doi:10.1126/scitranslmed.3001318 (2011).
21 Wang, Z. et al. Extraction and analysis of signatures from the Gene Expression Omnibus by the crowd. Nature communications7, 12846, doi:10.1038/ncomms12846 (2016).
22 Xu, L. et al. Human hepatic stellate cell lines, LX-1 and LX-2: new tools for analysis of hepatic fibrosis. Gut54, 142-151, doi:10.1136/gut.2004.042127 (2005).
23 Blaner, W. S. et al. Hepatic stellate cell lipid droplets: A specialized lipid droplet for retinoid storage. Biochim Biophys Acta1791, 467-473, doi:S1388-1981(08)00207-2 [pii]
10.1016/j.bbalip.2008.11.001 (2009).
24 Clarke, D. J. B. et al. eXpression2Kinases (X2K) Web: linking expression signatures to upstream cell signaling networks. Nucleic Acids Res46, W171-W179, doi:10.1093/nar/gky458 (2018).
25 Paish, H. L. et al. A Bioreactor Technology for Modeling Fibrosis in Human and Rodent Precision-Cut Liver Slices. Hepatology, doi:10.1002/hep.30651 (2019).
26 Tsuchida, T. et al. A Simple Diet- and Chemical-Induced Murine NASH Model with Rapid Progression of Steatohepatitis, Fibrosis and Liver Cancer. J Hepatol, doi:10.1016/j.jhep.2018.03.011 (2018).
27 Carter, J. K. et al. Modeling dysbiosis of human NASH in mice: Loss of gut microbiome diversity and overgrowth of Erysipelotrichales. PLoS One16, e0244763, doi:10.1371/journal.pone.0244763 (2021).
28 Kleiner, D. E. et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology41, 1313-1321, doi:10.1002/hep.20701 (2005).
29 Lehmann, A. GABAB receptors as drug targets to treat gastroesophageal reflux disease. Pharmacol Ther122, 239-245, doi:10.1016/j.pharmthera.2009.02.008 (2009).
30 Branden, L., Fredriksson, A., Harring, E., Jensen, J. & Lehmann, A. The novel, peripherally restricted GABAB receptor agonist lesogaberan (AZD3355) inhibits acid reflux and reduces esophageal acid exposure as measured with 24-h pHmetry in dogs. Eur J Pharmacol634, 138-141, doi:10.1016/j.ejphar.2010.02.015 (2010).
31 Boeckxstaens, G. E. et al. A novel reflux inhibitor lesogaberan (AZD3355) as add-on treatment in patients with GORD with persistent reflux symptoms despite proton pump inhibitor therapy: a randomised placebo-controlled trial. Gut60, 1182-1188, doi:10.1136/gut.2010.235630 (2011).
32 Friedman, S. L., Roll, F. J., Boyles, J. & Bissell, D. M. Hepatic lipocytes: the principal collagen-producing cells of normal rat liver. Proc Natl Acad Sci U S A82, 8681-8685, doi:10.1073/pnas.82.24.8681 (1985).
33 Tsuchida, T. & Friedman, S. L. Mechanisms of hepatic stellate cell activation. Nat Rev Gastroenterol Hepatol14, 397-411, doi:10.1038/nrgastro.2017.38 (2017).
34 Xiao, F. et al. The GABAB receptor inhibits activation of hepatic stellate cells. Dig Dis Sci55, 261-267, doi:10.1007/s10620-009-0743-2 (2010).
35 Potter, J. J., Rennie-Tankersley, L., Anania, F. A. & Mezey, E. A transient increase in c-myc precedes the transdifferentiation of hepatic stellate cells to myofibroblast-like cells. Liver19, 135-144 (1999).
36 Cai, X. et al. CXCL6-EGFR-induced Kupffer cells secrete TGF-beta1 promoting hepatic stellate cell activation via the SMAD2/BRD4/C-MYC/EZH2 pathway in liver fibrosis. J Cell Mol Med22, 5050-5061, doi:10.1111/jcmm.13787 (2018).
37 Chen, H., Liu, H. & Qing, G. Targeting oncogenic Myc as a strategy for cancer treatment. Signal Transduct Target Ther3, 5, doi:10.1038/s41392-018-0008-7 (2018).
38 Zhao, S. F., Wang, S. G., Zhao, Z. Y. & Li, W. L. AKR1C1-3, notably AKR1C3, are distinct biomarkers for liver cancer diagnosis and prognosis: Database mining in malignancies. Oncol Lett18, 4515-4522, doi:10.3892/ol.2019.10802 (2019).
39 Hsieh, S. Y. et al. Identifying apoptosis-evasion proteins/pathways in human hepatoma cells via induction of cellular hormesis by UV irradiation. J Proteome Res8, 3977-3986, doi:10.1021/pr900289g (2009).
40 Guo, P. et al. Ribosomal protein S15a promotes tumor angiogenesis via enhancing Wnt/beta-catenin-induced FGF18 expression in hepatocellular carcinoma. Oncogene37, 1220-1236, doi:10.1038/s41388-017-0017-y (2018).
41 Gunasekaran, V. P. & Ganeshan, M. Inverse correlation of ribosomal protein S27A and multifunctional protein YB-1 in hepatocellular carcinoma. Clin Biochem47, 1262-1264, doi:10.1016/j.clinbiochem.2014.05.004 (2014).
42 Zhang, D. Y. et al. A hepatic stellate cell gene expression signature associated with outcomes in hepatitis C cirrhosis and hepatocellular carcinoma after curative resection. Gut65, 1754 - 1764, doi:10.1136/gutjnl-2015-309655 (2016).
43 Hoshida, Y. et al. Gene expression in fixed tissues and outcome in hepatocellular carcinoma. N Engl J Med359, 1995-2004, doi:NEJMoa0804525 [pii]
10.1056/NEJMoa0804525 (2008).
44 Verbeke, L. et al. FXR agonist obeticholic acid reduces hepatic inflammation and fibrosis in a rat model of toxic cirrhosis. Sci Rep6, 33453, doi:10.1038/srep33453 (2016).
45 Adorini, L., Pruzanski, M. & Shapiro, D. Farnesoid X receptor targeting to treat nonalcoholic steatohepatitis. Drug Discov Today17, 988-997, doi:10.1016/j.drudis.2012.05.012 (2012).
46 Harrison, S. A. et al. Selonsertib for patients with bridging fibrosis or compensated cirrhosis due to NASH: Results from randomized phase III STELLAR trials. J Hepatol73, 26-39, doi:10.1016/j.jhep.2020.02.027 (2020).
47 Ratziu, V. & Friedman, S. L. Why do so many NASH trials fail? Gastroenterology, doi:10.1053/j.gastro.2020.05.046 (2020).
48 Natri, H. M., Wilson, M. A. & Buetow, K. H. Distinct molecular etiologies of male and female hepatocellular carcinoma. BMC Cancer19, 951, doi:10.1186/s12885-019-6167-2 (2019).
49 Lonardo, A. et al. Sex Differences in Nonalcoholic Fatty Liver Disease: State of the Art and Identification of Research Gaps. Hepatology70, 1457-1469, doi:10.1002/hep.30626 (2019).
50 Vandel, J. et al. Hepatic molecular signatures highlight the sexual dimorphism of Non-Alcoholic SteatoHepatitis (NASH). Hepatology, doi:10.1002/hep.31312 (2020).
51 Balakrishnan, M. et al. Women have Lower Risk of Nonalcoholic Fatty Liver Disease but Higher Risk of Progression vs Men: A Systematic Review and Meta-analysis. Clin Gastroenterol Hepatol, doi:10.1016/j.cgh.2020.04.067 (2020).
52 Hicks, D. F. et al. Transcriptome-based repurposing of apigenin as a potential anti-fibrotic agent targeting hepatic stellate cells. Sci Rep7, 42563, doi:10.1038/srep42563 (2017).
53 Soule, H. D., Vazguez, J., Long, A., Albert, S. & Brennan, M. A human cell line from a pleural effusion derived from a breast carcinoma. J Natl Cancer Inst51, 1409-1416, doi:10.1093/jnci/51.5.1409 (1973).
54 Subramanian, A. et al. A Next Generation Connectivity Map: L1000 Platform and the First 1,000,000 Profiles. Cell171, 1437-1452 e1417, doi:10.1016/j.cell.2017.10.049 (2017).
55 Liu, W., Baker, S. S., Baker, R. D., Nowak, N. J. & Zhu, L. Upregulation of hemoglobin expression by oxidative stress in hepatocytes and its implication in nonalcoholic steatohepatitis. PloS one6, e24363 (2011).
56 Feng, T. et al. Smad7 regulates compensatory hepatocyte proliferation in damaged mouse liver and positively relates to better clinical outcome in human hepatocellular carcinoma. Clin Sci (Lond)128, 761-774, doi:10.1042/CS20140606 (2015).
57 Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A102, 15545-15550, doi:10.1073/pnas.0506580102 (2005).
58 Alstermark, C. et al. Synthesis and pharmacological evaluation of novel gamma-aminobutyric acid type B (GABAB) receptor agonists as gastroesophageal reflux inhibitors. J Med Chem51, 4315-4320, doi:10.1021/jm701425k (2008).
59 Hong, F., Chou, H., Fiel, M. I. & Friedman, S. L. Antifibrotic activity of sorafenib in experimental hepatic fibrosis: refinement of inhibitory targets, dosing, and window of efficacy in vivo. Dig Dis Sci58, 257-264, doi:10.1007/s10620-012-2325-y (2013).
60 Friedman, S. L. et al. Isolated hepatic lipocytes and Kupffer cells from normal human liver: morphological and functional characteristics in primary culture. Hepatology15, 234-243 (1992).
61 Bhattacharya, D. et al. Aramchol downregulates stearoyl CoA-desaturase 1 in hepatic stellate cells to attenuate cellular fibrogenesis. J HEP REPORTS, in press (2021).
62 Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics29, 15-21, doi:10.1093/bioinformatics/bts635 (2013).
63 Di Tommaso, P. et al. Nextflow enables reproducible computational workflows. Nat Biotechnol35, 316-319, doi:10.1038/nbt.3820 (2017).
64 Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol15, 550, doi:10.1186/s13059-014-0550-8 (2014).
65 Yu, G., Wang, L. G., Han, Y. & He, Q. Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS16, 284-287, doi:10.1089/omi.2011.0118 (2012).
66 Marini, F. & Binder, H. pcaExplorer: an R/Bioconductor package for interacting with RNA-seq principal components. BMC Bioinformatics20, 331, doi:10.1186/s12859-019-2879-1 (2019).
67 van de Bovenkamp, M. et al. Precision-cut liver slices as a new model to study toxicity-induced hepatic stellate cell activation in a physiologic milieu. Toxicol Sci85, 632-638, doi:10.1093/toxsci/kfi127 (2005).
68 Percie du Sert, N. et al. Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 2.0. PLoS Biol18, e3000411, doi:10.1371/journal.pbio.3000411 (2020).