Akhtar, Z., Ofli, F., & Imran, M. (2021). Towards Using Remote Sensing and Social Media Data for Flood Mapping. ISCRAM 2021 Conference Proceedings–18th International Conference on Information Systems for Crisis Response and Management, 536–551.
Apel, H., Martínez Trepat, O., Hung, N. N., Chinh, D. T., Merz, B., & Dung, N. V. (2016). Combined fluvial and pluvial urban flood hazard analysis: Concept development and application to Can Tho city, Mekong Delta, Vietnam. Natural Hazards and Earth System Sciences, 16(4), 941–961. https://doi.org/10.5194/nhess-16-941-2016
Ayanu, Y. Z., Conrad, C., Nauss, T., Wegmann, M., & Koellner, T. (2012). Quantifying and Mapping Ecosystem Services Supplies and Demands: A Review of Remote Sensing Applications. Environmental Science & Technology, 46(16), 8529–8541. https://doi.org/10.1021/es300157u
Bangira, T., Alfieri, S. M., Menenti, M., Van Niekerk, A., & Vekerdy, Z. (2017). A Spectral Unmixing Method with Ensemble Estimation of Endmembers: Application to Flood Mapping in the Caprivi Floodplain. Remote Sensing, 9(10), Article 10. https://doi.org/10.3390/rs9101013
Beven II, J., Hagen, A., & Berg, R. (2022). National Hurricane Center Tropical Cyclone Report: Hurricane Ida. NOAA. https://www.nhc.noaa.gov/data/tcr/AL092021_Ida.pdf
Billings, S. B., Gallagher, E. A., & Ricketts, L. (2022). Let the rich be flooded: The distribution of financial aid and distress after hurricane harvey. Journal of Financial Economics, 146(2), 797–819. https://doi.org/10.1016/j.jfineco.2021.11.006
Blum, A. G., Ferraro, P. J., Archfield, S. A., & Ryberg, K. R. (2020). Causal Effect of Impervious Cover on Annual Flood Magnitude for the United States. Geophysical Research Letters, 47(5), e2019GL086480. https://doi.org/10.1029/2019GL086480
Boschetti, M., Nutini, F., Manfron, G., Brivio, P. A., & Nelson, A. (2014). Comparative Analysis of Normalised Difference Spectral Indices Derived from MODIS for Detecting Surface Water in Flooded Rice Cropping Systems. PLOS ONE, 9(2), e88741. https://doi.org/10.1371/journal.pone.0088741
Brandt, S. A., Lim, N. J., Colding, J., & Barthel, S. (2021). Mapping Flood Risk Uncertainty Zones in Support of Urban Resilience Planning. Urban Planning, 6(3), 258–271. https://doi.org/10.17645/up.v6i3.4073
Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324
Brelsford, C., Lobo, J., Hand, J., & Bettencourt, L. M. A. (2017). Heterogeneity and scale of sustainable development in cities. Proceedings of the National Academy of Sciences, 114(34), 8963–8968. https://doi.org/10.1073/pnas.1606033114
C. Yang, J. H. Everitt, & J. M. Bradford. (2007). Using Multispectral Imagery and Linear Spectral Unmixing Techniques for Estimating Crop Yield Variability. Transactions of the ASABE, 50(2), 6676–674. https://doi.org/10.13031/2013.22658
Calma, J. (2023, May 31). Scientists say they can’t rely on Twitter anymore. The Verge. https://www.theverge.com/2023/5/31/23739084/twitter-elon-musk-api-policy-chilling-academic-research
CDC. (2020). CDC/ATSDR Social Vulnerability Index [Database State]. https://www.atsdr.cdc.gov/placeandhealth/svi/data_documentation_download.html
Census. (2021). City and Town Population Totals: 2020-2021. Census.Gov. https://www.census.gov/data/tables/time-series/demo/popest/2020s-total-cities-and-towns.html
Clement, M. a., Kilsby, C. g., & Moore, P. (2018). Multi-temporal synthetic aperture radar flood mapping using change detection. Journal of Flood Risk Management, 11(2), 152–168. https://doi.org/10.1111/jfr3.12303
Collins, E. L., Sanchez, G. M., Terando, A., Stillwell, C. C., Mitasova, H., Sebastian, A., & Meentemeyer, R. K. (2022). Predicting flood damage probability across the conterminous United States. Environmental Research Letters, 17(3), 034006. https://doi.org/10.1088/1748-9326/ac4f0f
Cooley, S. W., Smith, L. C., Stepan, L., & Mascaro, J. (2017). Tracking Dynamic Northern Surface Water Changes with High-Frequency Planet CubeSat Imagery. Remote Sensing, 9(12), Article 12. https://doi.org/10.3390/rs9121306
Cooper, K., Rizzo, E., & Schmidt, S. (2022, September 1). One year after Hurricane Ida, Pa. Residents are still paying the price. WHYY. https://whyy.org/articles/pensylvannia-hurricane-ida-one-year-anniversary/
CRED. (2015). The Human Cost of Natural Disasters: A global perspective. Centre for Research on the Epidemiology of Disasters (CRED). http://repo.floodalliance.net/jspui/44111/1165
de Bruijn, J. A., de Moel, H., Jongman, B., de Ruiter, M. C., Wagemaker, J., & Aerts, J. C. J. H. (2019). A global database of historic and real-time flood events based on social media. Scientific Data, 6(1), Article 1. https://doi.org/10.1038/s41597-019-0326-9
FEMA. (2020, July 8). Flood Zones. https://www.fema.gov/glossary/flood-zones
FEMA. (2023, October 23). Laws and Regulations. https://www.fema.gov/flood-insurance/rules-legislation/laws
Feyisa, G. L., Meilby, H., Fensholt, R., & Proud, S. R. (2014). Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery. Remote Sensing of Environment, 140, 23–35. https://doi.org/10.1016/j.rse.2013.08.029
Fielding, J. L. (2018). Flood risk and inequalities between ethnic groups in the floodplains of England and Wales. Disasters, 42(1), 101–123. https://doi.org/10.1111/disa.12230
Gao, B. (1996). NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, 58(3), 257–266. https://doi.org/10.1016/S0034-4257(96)00067-3
Garbutt, K., Ellul, C., & Fujiyama, T. (2015). Mapping social vulnerability to flood hazard in Norfolk, England. Environmental Hazards, 14(2), 156–186. https://doi.org/10.1080/17477891.2015.1028018
Goffi, A., Stroppiana, D., Brivio, P. A., Bordogna, G., & Boschetti, M. (2020). Towards an automated approach to map flooded areas from Sentinel-2 MSI data and soft integration of water spectral features. International Journal of Applied Earth Observation and Geoinformation, 84, 101951. https://doi.org/10.1016/j.jag.2019.101951
Gómez-Palacios, D., Torres, M. A., & Reinoso, E. (2017). Flood mapping through principal component analysis of multitemporal satellite imagery considering the alteration of water spectral properties due to turbidity conditions. Geomatics, Natural Hazards and Risk, 8(2), 607–623. https://doi.org/10.1080/19475705.2016.1250115
Hall, T. M., & Kossin, J. P. (2019). Hurricane stalling along the North American coast and implications for rainfall. Npj Climate and Atmospheric Science, 2(1), Article 1. https://doi.org/10.1038/s41612-019-0074-8
Hermas, E., Gaber, A., & El Bastawesy, M. (2021). Application of remote sensing and GIS for assessing and proposing mitigation measures in flood-affected urban areas, Egypt. The Egyptian Journal of Remote Sensing and Space Science, 24(1), 119–130. https://doi.org/10.1016/j.ejrs.2020.03.002
Holland, G., & Bruyère, C. L. (2014). Recent intense hurricane response to global climate change. Climate Dynamics, 42(3), 617–627. https://doi.org/10.1007/s00382-013-1713-0
Hondula, K. L., DeVries, B., Jones, C. N., & Palmer, M. A. (2021). Effects of Using High Resolution Satellite‐Based Inundation Time Series to Estimate Methane Fluxes From Forested Wetlands. Geophysical Research Letters, 48(6). https://doi.org/10.1029/2021GL092556
Hosseiny, H., Crimmins, M., Smith, V. B., & Kremer, P. (2020). A Generalized Automated Framework for Urban Runoff Modeling and Its Application at a Citywide Landscape. Water, 12(2), 357. https://doi.org/10.3390/w12020357
Huete, A. (1997). A comparison of vegetation indices over a global set of TM images for EOS-MODIS. Remote Sensing of Environment, 59(3), 440–451. https://doi.org/10.1016/S0034-4257(96)00112-5
Ireland, G., Volpi, M., & Petropoulos, G. P. (2015). Examining the Capability of Supervised Machine Learning Classifiers in Extracting Flooded Areas from Landsat TM Imagery: A Case Study from a Mediterranean Flood. Remote Sensing, 7(3), Article 3. https://doi.org/10.3390/rs70303372
Jones, J. W. (2019). Improved Automated Detection of Subpixel-Scale Inundation—Revised Dynamic Surface Water Extent (DSWE) Partial Surface Water Tests. Remote Sensing, 11(4), Article 4. https://doi.org/10.3390/rs11040374
Kawasaki, A., Kawamura, G., & Zin, W. W. (2020). A local level relationship between floods and poverty: A case in Myanmar. International Journal of Disaster Risk Reduction, 42, 101348. https://doi.org/10.1016/j.ijdrr.2019.101348
Knighton, J., Hondula, K., Sharkus, C., Guzman, C., & Elliott, R. (2021). Flood risk behaviors of United States riverine metropolitan areas are driven by local hydrology and shaped by race. Proceedings of the National Academy of Sciences, 118(13), e2016839118. https://doi.org/10.1073/pnas.2016839118
Knutson, T. R., Sirutis, J. J., Zhao, M., Tuleya, R. E., Bender, M., Vecchi, G. A., Villarini, G., & Chavas, D. (2015). Global Projections of Intense Tropical Cyclone Activity for the Late Twenty-First Century from Dynamical Downscaling of CMIP5/RCP4.5 Scenarios. Journal of Climate, 28(18), 7203–7224. https://doi.org/10.1175/JCLI-D-15-0129.1
Kossin, J. P. (2018). A global slowdown of tropical-cyclone translation speed. Nature, 558(7708), Article 7708. https://doi.org/10.1038/s41586-018-0158-3
Kossin, J. P., Knapp, K. R., Vimont, D. J., Murnane, R. J., & Harper, B. A. (2007). A globally consistent reanalysis of hurricane variability and trends. Geophysical Research Letters, 34(4). https://doi.org/10.1029/2006GL028836
Kriegler, F. J., Malila, W. A., Nalepka, R. F., & Richardson, W. (1969). Preprocessing Transformations and Their Effects on Multispectral Recognition (p. 97). https://ui.adsabs.harvard.edu/abs/1969rse..conf...97K
Lin, N., Emanuel, K., Oppenheimer, M., & Vanmarcke, E. (2012). Physically based assessment of hurricane surge threat under climate change. Nature Climate Change, 2(6), Article 6. https://doi.org/10.1038/nclimate1389
Liu, L., Liu, Y., Wang, X., Yu, D., Liu, K., Huang, H., & Hu, G. (2015). Developing an effective 2-D urban flood inundation model for city emergency management based on cellular automata. Natural Hazards and Earth System Sciences, 15(3), 381–391. https://doi.org/10.5194/nhess-15-381-2015
Lorenz, M. O. (1905). Methods of Measuring the Concentration of Wealth. Publications of the American Statistical Association, 9(70), 209. https://doi.org/10.2307/2276207
Markhvida, M., Walsh, B., Hallegatte, S., & Baker, J. (2020). Quantification of disaster impacts through household well-being losses. Nature Sustainability, 3(7), Article 7. https://doi.org/10.1038/s41893-020-0508-7
Mason, D. C., Giustarini, L., Garcia-Pintado, J., & Cloke, H. L. (2014). Detection of flooded urban areas in high resolution Synthetic Aperture Radar images using double scattering. International Journal of Applied Earth Observation and Geoinformation, 28, 150–159. https://doi.org/10.1016/j.jag.2013.12.002
Maxwell, A. E., Warner, T. A., & Fang, F. (2018). Implementation of machine-learning classification in remote sensing: An applied review. International Journal of Remote Sensing, 39(9), 2784–2817. https://doi.org/10.1080/01431161.2018.1433343
McFeeters, S. K. (1996). The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7), 1425–1432. https://doi.org/10.1080/01431169608948714
Mtapuri, O., Dube, E., & Matunhu, J. (2018). Flooding and poverty: Two interrelated social problems impacting rural development in Tsholotsho district of Matabeleland North province in Zimbabwe. Jamba : Journal of Disaster Risk Studies, 10(1), 1–7. https://doi.org/10.4102/jamba.v10i1.455
NOAA. (2021, September). National Weather Service Forecast Office. https://www.weather.gov/wrh/climate?wfo=phi
Olofsson, P., Foody, G. M., Herold, M., Stehman, S. V., Woodcock, C. E., & Wulder, M. A. (2014). Good practices for estimating area and assessing accuracy of land change. Remote Sensing of Environment, 148, 42–57. https://doi.org/10.1016/j.rse.2014.02.015
Pekel, J.-F., Cottam, A., Gorelick, N., & Belward, A. S. (2016). High-resolution mapping of global surface water and its long-term changes. Nature, 540(7633), 418–422. https://doi.org/10.1038/nature20584
Perin, V., Tulbure, M. G., Gaines, M. D., Reba, M. L., & Yaeger, M. A. (2022). A multi-sensor satellite imagery approach to monitor on-farm reservoirs. Remote Sensing of Environment, 270, 112796. https://doi.org/10.1016/j.rse.2021.112796
Phan, T. N., Kuch, V., & Lehnert, L. W. (2020). Land Cover Classification using Google Earth Engine and Random Forest Classifier—The Role of Image Composition. Remote Sensing, 12(15), Article 15. https://doi.org/10.3390/rs12152411
Pickens, A. H., Hansen, M. C., Hancher, M., Stehman, S. V., Tyukavina, A., Potapov, P., Marroquin, B., & Sherani, Z. (2020). Mapping and sampling to characterize global inland water dynamics from 1999 to 2018 with full Landsat time-series. Remote Sensing of Environment, 243, 111792. https://doi.org/10.1016/j.rse.2020.111792
Pinos, J., & Quesada-Román, A. (2022). Flood Risk-Related Research Trends in Latin America and the Caribbean. Water, 14(1), Article 1. https://doi.org/10.3390/w14010010
Pulcinella, M., Meyer, K., & Cooper, K. (2021, September 1). Long recovery ahead as Ida’s remnants lead to historic flooding, tornadoes in Philly region. WHYY. https://whyy.org/articles/philly-says-to-shelter-in-place-as-schuylkill-river-expected-to-rise-to-major-flood-stage/
Rentschler, J., Salhab, M., & Jafino, B. A. (2022). Flood exposure and poverty in 188 countries. Nature Communications, 13(1), Article 1. https://doi.org/10.1038/s41467-022-30727-4
Rosser, J. F., Leibovici, D. G., & Jackson, M. J. (2017). Rapid flood inundation mapping using social media, remote sensing and topographic data. Natural Hazards, 87(1), 103–120. https://doi.org/10.1007/s11069-017-2755-0
Sanders, B. F., Schubert, J. E., Kahl, D. T., Mach, K. J., Brady, D., AghaKouchak, A., Forman, F., Matthew, R. A., Ulibarri, N., & Davis, S. J. (2022). Large and inequitable flood risks in Los Angeles, California. Nature Sustainability, 1–11. https://doi.org/10.1038/s41893-022-00977-7
Schaffer-Smith, D., Myint, S. W., Muenich, R. L., Tong, D., & DeMeester, J. E. (2020). Repeated Hurricanes Reveal Risks and Opportunities for Social-Ecological Resilience to Flooding and Water Quality Problems. Environmental Science & Technology, 54(12), 7194–7204. https://doi.org/10.1021/acs.est.9b07815
Schnebele, E., Cervone, G., & Waters, N. (2014). Road assessment after flood events using non-authoritative data. Natural Hazards and Earth System Sciences, 14(4), 1007–1015. https://doi.org/10.5194/nhess-14-1007-2014
Settle, J. J., & Drake, N. A. (1993). Linear mixing and the estimation of ground cover proportions. International Journal of Remote Sensing, 14(6), 1159–1177. https://doi.org/10.1080/01431169308904402
Shen, L., & Li, C. (2010). Water body extraction from Landsat ETM+ imagery using adaboost algorithm. 2010 18th International Conference on Geoinformatics, 1–4. https://doi.org/10.1109/GEOINFORMATICS.2010.5567762
Smith, A. B. (2023). U.S. Billion-dollar Weather and Climate Disasters, 1980—Present (NCEI Accession 0209268) [dataset]. NOAA National Centers for Environmental Information. https://doi.org/10.25921/STKW-7W73
Sofia, G., Roder, G., Dalla Fontana, G., & Tarolli, P. (2017). Flood dynamics in urbanised landscapes: 100 years of climate and humans’ interaction. Scientific Reports, 7(1), Article 1. https://doi.org/10.1038/srep40527
Sweet, W., Dusek, G. (Gregory P. ), Marcy, D. C., Greg (Gregory W.), C., & Marra, J. (2019). 2018 State of U.S. High Tide Flooding with a 2019 Outlook. https://doi.org/10.25923/RBV9-TH19
Tanim, A. H., McRae, C. B., Tavakol-Davani, H., & Goharian, E. (2022). Flood Detection in Urban Areas Using Satellite Imagery and Machine Learning. Water, 14(7), Article 7. https://doi.org/10.3390/w14071140
Tate, E., Rahman, M. A., Emrich, C. T., & Sampson, C. C. (2021). Flood exposure and social vulnerability in the United States. Natural Hazards, 106(1), 435–457. https://doi.org/10.1007/s11069-020-04470-2
Tiwari, V., Tulbure, M. G., Caineta, J., Gaines, M. D., Perin, V., Kamal, M., Krupnik, T. J., Aziz, M. A., & Islam, A. T. (2024). Automated in-season rice crop mapping using Sentinel time-series data and Google Earth Engine: A case study in climate-risk prone Bangladesh. Journal of Environmental Management, 351, 119615. https://doi.org/10.1016/j.jenvman.2023.119615
Trenberth, K. E., Cheng, L., Jacobs, P., Zhang, Y., & Fasullo, J. (2018). Hurricane Harvey Links to Ocean Heat Content and Climate Change Adaptation. Earth’s Future, 6(5), 730–744. https://doi.org/10.1029/2018EF000825
Tulbure, M. G., & Broich, M. (2013). Spatiotemporal dynamic of surface water bodies using Landsat time-series data from 1999 to 2011. ISPRS Journal of Photogrammetry and Remote Sensing, 79, 44–52. https://doi.org/10.1016/j.isprsjprs.2013.01.010
Tulbure, M. G., Broich, M., Ju, J., Masek, J. G., & Wearne, J. (2018). Quantifying surface water extent and flooding in a dynamic dryland river system using the Harmonized Landsat/Sentinel-2 Reflectance Product. 2018, H21E-08.
Tulbure, M. G., Broich, M., Perin, V., Gaines, M., Ju, J., Stehman, S. V., Pavelsky, T., Masek, J. G., Yin, S., Mai, J., & Betbeder-Matibet, L. (2022). Can we detect more ephemeral floods with higher density harmonized Landsat Sentinel 2 data compared to Landsat 8 alone? ISPRS Journal of Photogrammetry and Remote Sensing, 185, 232–246. https://doi.org/10.1016/j.isprsjprs.2022.01.021
Tulbure, M. G., Broich, M., Stehman, S. V., & Kommareddy, A. (2016). Surface water extent dynamics from three decades of seasonally continuous Landsat time series at subcontinental scale in a semi-arid region. Remote Sensing of Environment, 178, 142–157. https://doi.org/10.1016/j.rse.2016.02.034
U.S. Census Bureau. (2020). County-level Urban and Rural information for the 2020 Census [dataset]. https://www.census.gov/programs-surveys/geography/guidance/geo-areas/urban-rural.html
US Department of Commerce. (2022, October 26). Hurricane Ida Emergency Response Imagery. https://oceanservice.noaa.gov/news/aug21/ngs-storm-imagery-ida.html
US Department of Commerce, N. (2021). NWS Preliminary US Flood Fatality Statistics. NOAA’s National Weather Service. https://www.weather.gov/arx/usflood
U.S. Geological Survey. (2023). 3D Elevation Program 10-Meter Resolution Digital Elevation Model. [dataset]. https://www.usgs.gov/the-national-map-data-delivery
U.S. Government Accountability Office. (2021). FEMA Flood Maps: Better Planning and Analysis Needed to Address Current and Future Flood Hazards. https://www.gao.gov/assets/gao-22-104079.pdf
Van Oldenborgh, G. J., Van Der Wiel, K., Sebastian, A., Singh, R., Arrighi, J., Otto, F., Haustein, K., Li, S., Vecchi, G., & Cullen, H. (2017). Attribution of extreme rainfall from Hurricane Harvey, August 2017. Environmental Research Letters, 12(12), 124009. https://doi.org/10.1088/1748-9326/aa9ef2
Wing, O. E. J., Bates, P. D., Smith, A. M., Sampson, C. C., Johnson, K. A., Fargione, J., & Morefield, P. (2018). Estimates of present and future flood risk in the conterminous United States. Environmental Research Letters, 13(3), 034023. https://doi.org/10.1088/1748-9326/aaac65
Wing, O. E. J., Lehman, W., Bates, P. D., Sampson, C. C., Quinn, N., Smith, A. M., Neal, J. C., Porter, J. R., & Kousky, C. (2022). Inequitable patterns of US flood risk in the Anthropocene. Nature Climate Change, 12(2), Article 2. https://doi.org/10.1038/s41558-021-01265-6
Winsemius, H. C., Jongman, B., Veldkamp, T. I. E., Hallegatte, S., Bangalore, M., & Ward, P. J. (2018). Disaster risk, climate change, and poverty: Assessing the global exposure of poor people to floods and droughts. Environment and Development Economics, 23(3), 328–348. https://doi.org/10.1017/S1355770X17000444
Woznicki, S. A., Baynes, J., Panlasigui, S., Mehaffey, M., & Neale, A. (2019). Development of a spatially complete floodplain map of the conterminous United States using random forest. Science of The Total Environment, 647, 942–953. https://doi.org/10.1016/j.scitotenv.2018.07.353
Xu, H. (2006). Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing, 27(14), 3025–3033. https://doi.org/10.1080/01431160600589179