1. Hamilton, W.D. Extraordinary sex ratios. A sex-ratio theory for sex linkage and inbreeding has new implications in cytogenetics and entomology. Science 156, 477–488 (1967).
2. Windbichler, N., Papathanos, P.A., & Crisanti, A. Targeting the X Chromosome during Spermatogenesis Induces Y Chromosome Transmission Ratio Distortion and Early Dominant Embryo Lethality in Anopheles gambiae. PLoS Genet. 4, e1000291 (2008).
3. Galizi, R. et al. A synthetic sex ratio distortion system for the control of the human malaria mosquito. Nat. Commun. 5, 3977 (2014).
4. Galizi, R. et al. A CRISPR-Cas9 sex-ratio distortion system for genetic control. Sci. Rep. 6, 31139 (2016).
5. Papathanos, P.A. & Windbichler, N. Redkmer: An Assembly-Free Pipeline for the Identification of Abundant and Specific X-Chromosome Target Sequences for X-Shredding by CRISPR Endonucleases. CRISPR J. 1, 88–98 (2018).
6. Fasulo, B. et al. A fly model establishes distinct mechanisms for synthetic CRISPR/Cas9 sex distorters. PLoS Genet. 16, e1008647 (2020).
7. Meccariello, A. et al. Engineered sex ratio distortion by X-shredding in the global agricultural pest Ceratitis capitata. BMC Biol. 19, 78 (2021).
8. Burt, A. & Deredec, A. Self-limiting population genetic control with sex-linked genome editors. Proc. Biol. Sci. 285, 20180776 (2018).
9. Lawler, C.D. et al. The haplolethal gene wupA of Drosophila exhibits potential as a target for an X-poisoning gene drive. Preprint at https://www.biorxiv.org/content/10.1101/2023.06.23.546292v1 (2023).
10. de Clare, M., Pir, P. & Oliver, S.G. Haploinsufficiency and the sex chromosomes from yeasts to humans. BMC Biol. 9, 15 (2011).
11. Sved, J.A. et al. Extraordinary conservation of entire chromosomes in insects over long evolutionary periods. Evolution 70, 229–234 (2016).
12. Riddle, N.C. & Elgin, S.C.R. The Drosophila Dot Chromosome: Where Genes Flourish Amidst Repeats. Genetics 210, 757–772 (2018).
13. Emerson, J.J., Kaessmann, H., Betrán, E. & Long, M. Extensive gene traffic on the mammalian X chromosome. Science 303, 537–540 (2004).
14. Jiang, L. et al. RPL10L Is Required for Male Meiotic Division by Compensating for RPL10 during Meiotic Sex Chromosome Inactivation in Mice. Curr. Biol. 27, 1498–1505.e6 (2017).
15. Konet, D.S. et al. Short-hairpin RNA expressed from polymerase III promoters mediates RNA interference in mosquito cells. Insect Mol. Biol. 16, 199–206 (2007).
16. Catteruccia, F., Benton, J.P. & Crisanti, A. An Anopheles transgenic sexing strain for vector control. Nat. Biotechnol. 23, 1414–1417 (2005).
17. Berghammer, A.J., Klingler, M. & Wimmer, E.A. A universal marker for transgenic insects. Nature 402, 370–371 (1999).
18. Krzywinski, J., Sangaré, D. & Besansky, N.J. Satellite DNA From the Y Chromosome of the Malaria Vector Anopheles gambiae. Genetics 169, 185–196 (2005).
19. Buchman, A. & Akbari, O.S. Site-specific transgenesis of the Drosophila melanogaster Y-chromosome using CRISPR/Cas9. Insect Mol. Biol. 28, 65–73 (2019).
20. Bernardini, F. et al. Site-specific genetic engineering of the Anopheles gambiae Y chromosome. Proc. Natl. Acad. Sci. U. S. A. 111, 7600–7605 (2014).
21. Hammond, A. et al. Regulation of gene drive expression increases invasive potential and mitigates resistance. PLoS Genet. 17, e1009321 (2020).
22. Tazuke, S.I. et al. A germline-specific gap junction protein required for survival of differentiating early germ cells. Development 129, 2529–2539 (2002).
23. Volohonsky, G. et al. Tools for Anopheles gambiae Transgenesis. G3 5, 1151–1163 (2015).
24. Marygold, S.J. et al. The ribosomal protein genes and Minute loci of Drosophila melanogaster. Genome Biol. 8, R216 (2007).
25. Hoyle H.D., Hutchens J.A., Turner F.R. & Raff E.C. Regulation of beta-tubulin function and expression in Drosophila spermatogenesis. Dev Genet. 16, 148–170 (1995).
26. Alcalay, Y. et al. The Potential for a Released Autosomal X-Shredder Becoming a Driving-Y Chromosome and Invasively Suppressing Wild Populations of Malaria Mosquitoes. Front. Bioeng. Biotechnol. 9, 752253. (2021).
27. Magnusson, K. et al. Transcription Regulation of Sex-Biased Genes during Ontogeny in the Malaria Vector Anopheles gambiae. PLoS One 6, e21572 (2011).
28. Smidler, A.L. et al. CRISPR-mediated germline mutagenesis for genetic sterilization of Anopheles gambiae males. Preprint at https://www.biorxiv.org/content/10.1101/2023.06.13.544841v1 (2023).
29. Taxiarchi, C. et al. High-resolution transcriptional profiling of Anopheles gambiae spermatogenesis reveals mechanisms of sex chromosome regulation. Sci. Rep. 9, 14841 (2019).
30. Leite, L.N., Bascuñán, P., Dotson, E.M. & Benedict, M.Q. Considerations for Rearing and Maintaining in the Laboratory. Cold Spring Harb. Protoc. (2023).
31. Labun, K., Montague, T.G., Gagnon, J.A., Thyme, S.B. & Valen, E. CHOPCHOP v2: a web tool for the next generation of CRISPR genome engineering. Nucleic Acids Res. 44, W272–W276 (2016).
32. Pondeville, E. et al. Efficient ΦC31 integrase-mediated site-specific germline transformation of Anopheles gambiae. Nat. Protoc. 9, 1698–1712 (2014).
33. Pinello, L. et al. Analyzing CRISPR genome-editing experiments with CRISPResso. Nat. Biotechnol. 34, 695–697 (2016).