
Parallel Processing of Real-time Tasks on Multi-core
Systems
Saleh Alrashed

Imam Abdulrahman Bin Faisal University
Nasro Allah

Imam Abdulrahman Bin Faisal University

Research Article

Keywords: Operating Systems, Parallel Programming, Real-time Systems, Fixed-priority Scheduling, IoT,
Feasibility Analysis

Posted Date: January 29th, 2024

DOI: https://doi.org/10.21203/rs.3.rs-3891715/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

Additional Declarations: No competing interests reported.

https://doi.org/10.21203/rs.3.rs-3891715/v1
https://doi.org/10.21203/rs.3.rs-3891715/v1
https://creativecommons.org/licenses/by/4.0/

Springer Nature 2021 LATEX template

Parallel Processing of Real-time Tasks on

Multi-core Systems

Saleh Alrashed1* and Nasro Min-Allah2

1Management Information Systems Department, College of
Applied Studies and Community Service, Imam Abdulrahman Bin
Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia.
2Department of Computer Science, College of Computer Science
and Information Technology, Imam Abdulrahman Bin Faisal
University, P.O. Box 1982, Dammam 31441, Saudi Arabia.

Abstract

Real-time systems are becoming more and more compute-intensive estab-
lishing the need for novel techniques to distribute the workload on
multi-core systems adequately. In this work, we divide directed acyclic
graph (DAG) of a task into sub-tasks such that each sub-tasks is rep-
resented as a thread and hence becomes a candidate to run in parallel
on multi-core systems. We begin by adjusting tasks deadlines based on
fixed priority scheduling algorithm in such a way that required compu-
tation is done much faster on multi-core system by exploiting potential
parallelism that exists in periodic tasks. We assign modified deadlines to
tasks based on the concept of span and prove that such task sets remain
schedulable with modified deadlines by utilizing adequate number of
cores. This approach allows parallel processing of periodic tasks employ-
ing a minimum number of required cores. Our experimental results show
that for embarrassingly parallel code, deadlines of unit lengths provide
linear speedup while there is no improvement when a task can not be
divided into sub-tasks and hence one processor suffice to deal with serial
execution of the task. We run our experiments on synthetic task set
of various system utilization. Our results show that significant speedup
is achieved when the task system exhibits high degree of parallelism.

Keywords: Operating Systems, Parallel Programming, Real-time Systems,
Fixed-priority Scheduling, IoT, Feasibility Analysis

1

Springer Nature 2021 LATEX template

2 Article Title

1 Introduction

Real-time systems impose strict timing constraints on tasks and hence can not
rely on statistical models. Instead, verified mathematical models are needed
to ensure that deadlines of tasks are never missed, even under worst case sce-
nario. This worst-case scenario puts limitations and requires ample resources
to handle such scenarios, though while running the actual resource usages
might be much lower than the anticipated worst case. Unlike non-real-time
system where applications can exploit multi-cores system, care is needed for
real-time system to guarantee that deadlines are always respected [1]. Espe-
cially in latest applications such medical or other IoT based applications, more
and more data is generated in real-time that needs efficient processing on latest
multi-core systems.

Feasibility analysis of real-time system are divided into two main types of
priority driven algorithms: fixed priority and dynamic priority. With an oper-
ating systems using fixed-priority scheduling algorithm priority, a priority once
assigned to a task remains fixed. On contrary, priorities do change at run time
under dynamic priority algorithms [2]. Fixed priority scheduling is superior
when it comes to system predictability. A real time system must provide pre-
dictable behavior. Due to its reliability and simplicity, Rate Monotonic (RM)
scheduling [2] has become the de-fecto standard for real time systems and
adopted by Boeing, General Dynamics, General Electric, Honeywell, IMB and
NASA etc [3][4].

With multi-core systems, performance gains are possible sometimes but
need considerable work is needed to analyze the code if it can run in par-
allel. Performance gains are high for embarrassingly parallel systems where
performance is linked with number of cores, however, in the programs where
majority of the code run in serial fashion, performance gains are negligible and
even worse, programs degrades due to communication and synchronisations
overheads involved. Almost, all computing machines even cellphones are multi-
cores today and like other applications, real-time systems also run successfully
on such multi-core systems. However, it is complicated to take full advan-
tage of cores when tasks have hard deadlines. With hard deadlines, missing an
associated deadline is not permitted under any circumstances.

In this work, we propose a technique that successfully executes task with
strict relative deadlines to run on multi-core systems. Each task generate a
number of jobs which becomes a run-able entity with its own CPU utilization
demand and corresponding absolute deadline. We divide a job into sub-jobs
and execute these sub-jobs in parallel as long as timing restrictions are intact.
We also assign absolute deadlines based on the longest threads among the run-
ning sub-jobs. It is worth noting that when number of processors approaches
infinity, system performance is dominated by the span–the longest time needed
to execute a parallel path of computation by a thread [5].

Initially, we assume a periodic task set with strict deadlines and then dis-
tribute the task computation on multiple threads which can run in parallel.

Springer Nature 2021 LATEX template

Article Title 3

This strategy helps in completing tasks execution much early than the origi-
nals deadline and hence provides a time window to adjust deadlines on the fly.
A limiting factor in our work is the long threads which takes maximum time
as such threads run serially and irrespective of number of available processors,
a task can not be completed before this its corresponding deadline. We cre-
ate Directed Acyclic Graph (DAG) of a periodic task, calculate the work, and
then identify the span. Based on these factors we run the task in parallel by
utilizing an adequate number of processors.

The rest of the work is organized in the following order. Section 2 discusses
background work and related to real-time system followed by feasibility tests.
In Section 2, we also discuss the problem of tasks computation is shown through
DAG to highlight the impact of span on task execution on multi-core system.
The main results are shown in Section 3 and 4 where theoretical results are
established to run real-time system on multi-core system under a fixed priority
scheduling algorithm. Experimental results are given in Section 5 and finally,
the paper is concluded in Section 6.

2 Background and Related Work

Let Γ = {τ1, τ2, ..., τn} represent a non-concrete periodic task system having
periodic tasks. A non-concrete periodic task τi recurs and is represented by a
tuple (ci, di, pi), where ci, di, pi represent the computation time, relative dead-
line, and task period, respectively . In our model of a hard real-time task set,
each task τi generates a job ji at each integer multiple of pi and each such job
has an execution requirement of ci time units that must be completed by the
next integer multiple of pi. Moreover, all tasks immediately get ready for exe-
cution on uniprocessor as soon as they are released and all tasks overheads,
such as task swapping times etc. are subsumed into task computation times.
Furthermore, we assume that initially, all of the tasks arrive simultaneously at
t = 0.

An important issue in the design of real-time systems is of timing cor-
rectness. To handle the timing constraints, optimal scheduling of tasks on
the given platform is needed. Tasks in real-time systems are scheduled using
a priority based algorithms. These algorithms assign priorities to task based
on some predefined criteria such as activation rate or deadline etc. Priority
based scheduling algorithms for real-time systems fall into two major types:
fixed priority and dynamic priority [6, 7]. Under a fixed-priority algorithm,
fixed priorities are assigned to all jobs in each task. In contrast, dynamic-
priority scheduling algorithms assign dynamic priorities to individual jobs and
hence can vary at run time. In theory dynamic algorithms are considered supe-
rior due to its higher system utilization capability, such algorithms become
unpredictable when transient overload occurs [8–10]. Fixed-priority schedul-
ing algorithms offer reliability and simplicity, and hence we only consider
fixed-priority scheduling in this work.

Springer Nature 2021 LATEX template

4 Article Title

For validating timing constrains under fixed priority systems, feasibility
analyses — given a real-time application and processing resource, determin-
ing whether it is possible to meet all the deadlines under RM scheduling
algorithm — are performed to achieve system predictability. In their seminal
paper [2] in 1973, C. L. Liu and J. W. Layland formalized real-time scheduling
theory and ended up with a classic Rate Monotonic (RM) scheduling policy.
This policy is optimal for case when task deadlines and periods are the equal.
Authors in [2], showed that the task set is always feasible under rate mono-
tonic scheduling scheme if the system utilization is below a threshold value of
69%. Consequently, in the last 40 years that have followed, assumptions were
relaxed. With such adjustments, the impact of rate monotonic scheduling pol-
icy and feasibility analysis has been reported in literature. Accordingly many
feasibility conditions were presented [6–8, 11–15].

RM assigns static priorities on task activation rates (periods) such that for
any two tasks τi and τj , priority (τi) > priority (τj) ⇒ period (τi) < period
(τj), while ties are broken arbitrarily. RM is optimal in the sense that if any
task set can be scheduled with a fixed-priority assignment scheme, then the
given task set also can be scheduled with a rate-monotonic scheme. Due to its
implicit characteristics such as simplicity and reliability, the RM has become
the defacto standard supported by the USA Department of Defense and many
other organization/manufacturers, such as IBM and General Motors [16].

In the rest of the paper, the task model refers to the above task model
(implicit deadline model), which is well studied in literature. Rate Monotonic
Analysis (RMA) is made to determine RM task feasibility. A brief discussion
on these tests is provided in the following. The workload constituted by τi
at time t, consists of its execution demand ci as well as the interference it
encounters due to higher priority tasks from τi−1 to τ1, and can be expressed
mathematically as

wi(t) = ci +

i−1
∑

j=1

⌈
t

pj
⌉cj (1)

A periodic task τi is feasible if we find some t ∈ [0, t] satisfying

Li = min
0<t≤pi

(

wi(t) ≤ t

)

(2)

The time complexity of the above condition depends on both the number of
tasks and maximum task period i.e., O(npn/p1).

3 Parallel Execution of Real-time Systems

Quality of a parallel algorithm can be defined by two metrics called work
and span. Both metrics are important because they give limits to parallel
computing and introduce the notion of work. Parallel algorithms have the
challenge of being fast, but also to generate the minimum amount of extra

Springer Nature 2021 LATEX template

Article Title 5

work. By doing less extra work, they become more efficient. In our model, work
is the total time needed to execute a parallel algorithm using one processor;
denoted as T(n, 1), while span (also called depth) is defined as the longest
time needed to execute a parallel path of computation by one thread; denoted
as T(n, p). Span is the equivalent of measuring time when using an infinite
number of processors.

In a parallel program, one of the limiting factor is the longest thread which
will occupy one of the processors and hence the all other cores will need to
wait for this thread to complete and hence this longest thread dominate the
execution time of the overall program. It is worth noting that a thread in our
model can not be broken into small parts and hence considered the smallest
portion of the program that can run on a core. Using fork-join approach, the
remain threads will complete early but cant reduce the run-time of the program
due to this bottleneck of longest thread. Irrespective, of the number of cores,
the program run-time depends on this thread. In embarrassingly parallel code,
all threads of equal size and run-time reduces with adding more cores. To
highlight the role, of longest thread, we introduce the work and span law in
the following.

According to work law [5], the running time of a parallel algorithm must
be at least 1/p of its work. The work law equation states the first lower bound:
T (n, p)/geT (n, 1)/p, where T (n, 1) is the time needed to execute a parallel
algorithm using one processor, T (n, p) is time needed to execute a parallel
algorithm using p processors, while p represents the number of processors. With
the work law, one can realize that parallel algorithms run faster when the work
per processor is balanced. That is, the running time of a parallel algorithm
must be at least 1/p of its work. With the work law, one can realize that parallel
algorithms run faster when the work per processor is balanced. The span law
defines the second lower bound for T(n, p) as T (n, p) >= T (n,∞), where
T (n, 1) is the time needed to execute a parallel algorithm using infinite number
of processors i.e., span. This means that the time of a parallel algorithm cannot
be lower than the span or the minimal amount of time needed by a processor
in an infinite processor machine. In graph theory, DAG is used to represent an
acyclic graph with no directed cycles. In general scheduling DAG is an NP-hard
problem. To construct a program that has DAG, it is useful to add labels to the
strands to indicate the number of milliseconds it takes to execute each strand.
In data analysis, normally jobs consist of many stages and can be expressed
as DAG. The precedence relationships between stages cause scheduling a very
challenging task.

In Fig. 1, we represent DAG of a parallel structures of a general parallel
task and assuming the numbers associated with edges represent time in mil-
liseconds. In Fig. 1, the total amount of processor time required to complete
the program is the sum of all the numbers. This value is defined as the work.
So for the given DAG, the work is 128 milliseconds for all 12 strands shown in
Fig. 1. In other words, if the program runs on a single processor, the program

Springer Nature 2021 LATEX template

6 Article Title

Fig. 1 Parallel Flow of Threads of a Task τi

Fig. 2 Dividing Deadline into Multiple Sub-deadlines

should run for 128 milliseconds. Fig. 2 shows the breakdown of a job into sub-
jobs where each job as its own deadline and these are handled by two threads
responsible for the running parts of the code following different paths. We now
extract, the most expensive route from the beginning to the end of the code
which is the span. For this DAG, the span is 29 milliseconds, as shown in the
following Fig. 3.

We can now express parallelism for Fig. 1 as Parallelism = Work/Span=
2.69. This shows that the program achieve reasonable speedup on 3 cores and
any further additional cores will be useless. Rather it can degrade performance
in actual with synchronization and associated communication overheads.

Springer Nature 2021 LATEX template

Article Title 7

After extracting parallelism, we calculate speedup for the given DAG.
Speedup can be described as one of the most important actions in parallel
computing as it actually measure how much faster a parallel algorithm runs
with respect to the best sequential one. This measure is known as speedup
and it is the gain in speed made by parallel execution compared to sequential
execution. For a problem of size n, the expression for speedup is: SP >= w/ψi

This speedup becomes an upper bounded when n is fixed because of the
work law. Let c be the fraction (in a/b form or as a real number) of a program
that is parallel, (1− c) the fraction that runs sequential and p the number of
processors. According to Amdahl’s law [5] when parallel portion is dominant,
the speedup is more , especially when P = ∞, then SP = 1/(1− par), where
par is the parallel portion of a task. When p → ∞, no matter how many
processors we use, we would not expect to gain any more speedup than the
reciprocal of the serial fraction.

When the speedup increases linearly as a function of p, then it means that
the overhead of the algorithm is always in the same proportion with its running
time, for all p. In the particular case, we consider ideal speedup or perfect
linear speedup. We expect that speedup cannot be better (larger) than linear,
and indeed should be smaller. If the entire work of the sequential program
could be evenly divided among the p processors, they could all complete in 1/p
time units. But it is unlikely that the work could be divided evenly; programs
tend to have a sequential part, such as initialization or reading data from or
writing results to sequential files. Even if the program could be evenly divided
among p processors, the processors would probably have to coordinate their
work with each other, which would require extra instruction executions beyond
the sequential program.

When there is no dependence constraints for task, the main attraction is
how to execute tasks in parallel and this steps is straightforward. We now
study the impact of parallelism portion of code on the speed up. For a single
core machine, whatever is the situation (parallel or no parallel code), the speed
up is always 1. Definitely, for the maxim performance, we assume P = ∞
and thus the speedup becomes: Sp = 1/(1 − c), where 1 − c is the parallel
portion of the code. Lets assume (1 − c) = 0.1 i.e., parallel portion is=10 %,
Speedup=1.11 (as compared to 1.0 on single core. So if you keep p=infinity,
the speed is still almost the same. In other words, not much gains are achieved
when we increase the processors but the code is only 10% parallelizable. For
improved speed up, the motivation is to develop another algorithm that allows
more parallelism in code. Again, lets put c=0.5, where 50% code can run in
parallel, then Sp = 2 and instead of infinite number of processors the speedup
remains 2 which suggest more more than 2 processors could hardly bring any
improvement. Even when we add more processors to this computation, say
p=100000, the speed will remain 2 for the above case as Sp = 1/((1−c)+c/p) =
/((1 − 0.5) + 0.5/100000) = 2.000005. It is worth mentioning that with 2
processors number of the speed up is 2 while by adding 100000, the speed up

Springer Nature 2021 LATEX template

8 Article Title

Fig. 3 Identification of Span in Parallel Structure of Program

improvement is only 0.000005 and this is also when coordination among the
processors is subsumed to zero.

We subsumed all the serial code before and after the parallel region into ψi

and it can be noted task τi can not be completed before time ψi whatever is the
number of cores. We now introduce the modified task which has computation
demand c

′

i and deadline ψi i.e., τ
′

i (c
′

i, ψi), where c
′

i = ci(seri) + ci(para). Here
ci(serial) represents the serial execution while ci(para) denotes of the parallel
execution of a task. When ci(seri) >> ci(para) then single CPU might be
sufficient otherwise multi-core is better alternative as it can lower the ci(paral)
part with increased number of cores.

4 Feasibility Test for Parallel Systems

It can be seen from Fig. 1 that multiple threads have now separate deadlines
and we should identify the longest thread. In a serial execution of a task τi, it
is desirable to minimize di so that task can be completed as soon as possible,
however di remains the same under single processor system. While in parallel
execution, there is a possibility that the task taui can be divided into sub-tasks
so that multiple processing units could execute a sub-tasks in parallel. Ideally
the deadline di should be uniformly divided among the existing p processor
as di/p. In practicals system such embarrassing parallelism (systems where
workload can be perfectly divided among cores) is rare and for periodic task,
it is extremely rare. If a task deadline di = 10ms and it runs on single core
machine so it takes 10ms to complete while ruining the same task (assuming
embarrassingly parallel) on 10 core machines will take 1ms as di/p = 10ms/10.
This observation suggests to distribute the workload ci of a task τi among
cores so that deadlines are respected and the task gets ci time before di on
p processors. In Fig. 2, we show two deadlines only d(i, 1) and d(i, n), where

Springer Nature 2021 LATEX template

Article Title 9

d(i, 1) is the first thread that has to be completed by d(i, 1) while last thread
has a deadline d(i, n) for a task τi.

Among all threads, the longest thread is the one which will completed last
even if executed in parallel and all other threads are expected to be complete
before this point. Since this is the worst combination for any thread in task
τi , we represent such thread by ψi in Fig. 3. Now, ψi is the critical path
which can be visualized as serial execution of the thread and can be derived
as : ψi = max(d(i, j)), where ”i” is the i-th task and ”j” represents Thread-
j in all possible threads of task τi. The minimum number of threads needed
to execute this workload can be written as: pthreads = ⌈w/j⌉, and hence we
run each thread on a separate processor where p processors are sufficient to
run the task successfully. With such representation of span, a task can not be
completed before ψi even on infinite number of processors.

With the new deadline of ψi, we need to ensure the task τi is schedulable
by ψi. We need to ensure the task τi remains schedulable and hence the term
n
∑

i=1

ci(para) which is multi-core dependent and plays critical role in feasibility

analysis. When ψi = di, there is no parallel section in the task computation
and when ψi << di, there are more opportunities to be exploited due to
parallelism. Since ψi is the longest path, no other path can be greater than ψi

and hence one a homogeneous system, the other core can not take more than
ψi time in worst case.

For non-real time systems, especially for embarrassingly parallel problems,
the increased number of processors has huge impact on workload. However,
in real-time systems with hard deadlines, jobs can not be assigned without
guaranteed timing constraints. This requirement posses a question of how to
determine feasibility of task with known ci(w)? To answer this question, we
now modify feasibility condition provided in [17] for RM by integrating ci(w).

Theorem 1 A task τi is schedulable iff wi(t) <= t; t ∈ Si, Si = lpj, ; j = 1, ..., n, l =
1, ..⌊ψi/pj⌋.

Proof Let di < ψi and task is schedulable. Thus, the inequality [ψi/pj] < [di/pj]
holds. Since it is not possible to happen a due to the fact that τi as di can not be
satisfied. So, when ci(ser) + ci(para) < t then p→ ∞. As ci(w) is not influenced by
p → ∞, while ci(para) becomes negligible in this case. Then we can say a task on
p→ ∞ is schedulable if ci(ser) < t. This concludes the proof. □

Since two task τi and τi+1 are schedulable only if ci(ψi) + ci+1(ψi+1) <= t
and a task set of size n tasks is also schedulable.

Corollary 1.1 For a periodic task τi, di is always larger or equal to ψi.

Springer Nature 2021 LATEX template

10 Article Title

Proof Lets assume ψi > di and τi is schedulable. So,

ci +

i−1∑

k=1

⌈ψi/pk⌉ck ≤ wi(ψi) (3)

Hence, ψi > di, then ⌈ψi/pk⌉ck > ⌈di/pk⌉ck which is incorrect as for ∀k,
(ψi/pk) ≤ (di/pk) always holds. □

Theorem 2 A task τi is always RM schedulable on a multi-core system iff:

wi(ψi) <= ψi (4)

Proof We prove Theorem 2 by contradiction. Lets assume τi is RM-schedulable on
multi-system while the expression does not hold. So,

w(ψi) > wi(di)

ci +

n−1∑

k=1

⌈ψi/pk⌉ck > wi(di)

Since,

n−1∑

k=1

⌈ψi/pk⌉ck = ci +

n−1∑

k=1

⌈ψi/pk⌉ck (5)

As ψi ≤ di, therefore,

n∑

k=1

⌈ψi/pk⌉ck >

n∑

k=1

⌈di/pk⌉ck (6)

which contradicts our assumption that the task is RM-schedulable and hence con-
cludes the proof. □

Corollary 2.1 An ordered set of periodic task is always RM-feasible on a SP multi-
core system iff: max(1≤i){(wi(ψi) <= ψi)}

Proof It follows directly from Theorem 2 for the entire task set. □

Springer Nature 2021 LATEX template

Article Title 11

Fig. 4 Effect of System Utilization on Number of Cores

5 Experimental Results

We generated random task sets with varying task deadlines under uniform
distribution. According to respective deadlines, task computation values were
extracted again using uniform distribution. Based on task periods, RM prior-
ities were assigned to tasks. For simplicity, we normalized task deadlines on
a scale of 1 to 10. We run the experiment 200 times and average values are
plotted in Fig. 4 and Fig. 5.

In Fig. 4, we study the effect of system utilization on the overall schedu-
lability of the task set and the number of processors need to keep system
feasibility intact. When utilization is low then it can be seen that all task are
schedulable. In such cases the utilization of the task set is not more than ln(2).
By increasing the utilization up-to 80% , a few task can miss the deadlines,
however the number is negligible. By increasing utilization further to 90%, a
large number of tasks start missing deadlines and hence need more processors.
Since RM scheduling theory is used in this work, system feasibility is question-
able at higher utilization. By introducing ψi, we split a deadline into multiple
threads and try to respect timing constraints by ruining these threads on avail-
able cores. As seen in Fig. 4, after a certain increase in utilization the number
of cores become irrelevant as the task size is also increasing but if we could
evenly divide a given task among available cores, there are speed gains and
few cores are needed to run these tasks by respecting associated deadlines.

When ψi = wi then there is no parallelism in tasks and only one one thread
is running and hence executing this thread on multi-core system does not bring
any benefit. On the other hands, when ψi is large, threads takes more time
to complete. In our case, the shorter is the psii, then better it is as the task

Springer Nature 2021 LATEX template

12 Article Title

Fig. 5 SpeedUp vs Degree of Parallelism in Tasks

can now complete early but it will need more processors to complete. With
linear speed up, ψi = pi where ψi is a fraction number. When we keep ψi = 1
then wi processors will be needed and each processors will perform a unit of
the workload, however making ψi < 1 will need more processors i.e. when
ψi → ∞, then p → ∞ which is unreasonable assumption. It can be seen from
Fig. 5 that when ψi is shorter the di then there exists more opportunities for
parallelism. This trends goes on to unit value when ration between ψi and p is
1 which is an ideal case as the code is highly parallel. On the other side, when
both ψi and di are the same and suggests lack of any parallel component and
hence one thread is sufficient to run on a single core due to sequential nature
of the task. For tasks when ψi is smaller, speedup is insignificant as little
or no parallelism is available, however when ψi is increased, there are more
opportunities for parallelism and hence speedup is more as shown in Figure
5. We drawn a boundary as partially parallel to divide tasks which posses
less parallelism are shown between serial and partially parallel while tasks
with more parallelism are group between partially parallel and highly parallel
regions. When pthread = 1, this situation is shown as serial code because
there is no parallelism as deadline can not be divided into smaller deadlines
without jeopardising the task feasibility. By relaxing deadlines, more and more
speedup is achieved and when restrictions is removed fully, the behaviour leads
to perfectly linear performance. It can be seen that initially performance grows
when deadlines are larger but irrespective of degree of parallelism, speedup
becomes flat after achieving a certain degree of performance gain as more
speedup becomes very hard which is aligned with our theoretical results.

Springer Nature 2021 LATEX template

Article Title 13

6 Conclusion

We developed a mechanism to run real-time systems with strict deadlines effi-
ciently on multi-core systems. The original deadlines were divided into shorter
deadlines which identified parallelism in a task. Based on inherit parallelism,
sub-tasks were then presented to a scheduler that run the code in parallel
(where possible) and offered enhanced speedup. With such adjustments, we
proved that deadlines were respected by running the code on adequate num-
ber of processing cores. As a future work, it will interesting to study parallel
execution of periodic tasks by considering dynamic voltage scaling to iden-
tify system speed such that deadlines are respected while running the task set
using appropriate system speed.

7 Declarations

Ethics approval and consent to participate -not applicable.
Consent for publication Authors hereby provide consent for the publi-

cation of the manuscript detailed above, including any accompanying images
or data contained within the manuscript. All study participants, or their legal
guardian, provided informed written consent prior to study enrollment.

Availability of data and materials –not applicable.
Competing interests The authors declare that they have no known com-

peting financial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Funding not applicable.
Authors’ contributions N.M. Allah sketched the idea of parallel exe-

cution by considering span. S. Alrashed derived theorems and performed
experimentation.

Acknowledgements We would like to express our sincere gratitude to all
the individuals and organizations that have contributed to the publication of
this research paper.

References

[1] Krishna, C.M., Shin, K.G.: Real Time Systems. McGrawHill, 1 (1997)

[2] Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in
a hard real-time environment. Journal of the ACM 20(1), 40–61 (1973)

[3] Fisher, N., Baruah, S., Baker, T.P.: The partitioned scheduling of spo-
radic tasks according to static-priorities. In: ECRTS ’06: Proceedings
of the 18th Euromicro Conference on Real-Time Systems, pp. 118–127.
IEEE Computer Society, Washington, DC, USA (2006). https://doi.org/
10.1109/ECRTS.2006.30

https://doi.org/10.1109/ECRTS.2006.30
https://doi.org/10.1109/ECRTS.2006.30

Springer Nature 2021 LATEX template

14 Article Title

[4] Bini, E., Buttazzo, G.C., Buttazzo, G.: Rate monotonic analysis: the
hyperbolic bound. IEEE Transactions on Computers 52(7), 933–942
(2003)

[5] Amdahl, G.M.: Validity of the single processor approach to achieving
large-scale computing capabilities. In: AFIPS Conference Proceedings
(30), pp. 483–485 (1967)

[6] Liu, J.W.S.: Real Time Systems. Prentice Hall, 2000

[7] Buttazzo, G.C.: Rate monotonic vs. edf: Judgment day. Real-Time
Systems 29(1), 5–26 (2005)

[8] Bini, E., C.Buttazzo, G.: Schedulability analysis of periodic fixed priority
systems. IEEE Transactions on Computers 53(11), 1462–1473 (2004)

[9] Laplante, P.A.: REAL-TIME SYSTEMS DESIGN AND ANALYSIS,
2004

[10] Burns, A., Wellings, A.: Real-time Systems and Programming Languages.
Ada 95, Real-Time Java and Real-time POSIX, 3rd edn. Addison Wesley
Longmain, 2001

[11] Audsley, N.C., Burns, A., M.Richardson, Wellings, A.: Applyingnew
scheduling theory to static priority preemptive scheduling. Software
Engineering Journal 8(5), 284–292 (1993)

[12] Joseph, M., Pandya, P.: Finding response times in a real-time system.
The Computer Journal 29(5), 390–395 (1986)

[13] Min-Allah, N., Ali, I., Xing, J., Wang, Y.: Utilization bound for periodic
task set with composite deadline. Journal of Computers and Electrical
Engineering, Accepted (2010)

[14] Manabe, Y., Aoyagi, S.: A feasibility decision algorithm for rate monotonic
and deadline monotonic scheduling. Real-Time Systems 14(2), 171–181
(1998)

[15] Sjodin, M., Hansson, H.: Improved response-time analysis calculations.
Proceedings of the 19th IEEE Real-Time Systems Symposium, 399–409
(1998)

[16] Orozco, J., Cayssials, R., Santos, J., Santos, R.: On the Minimum Number
of Priority Levels Required for the Rate Monotonic Scheduling of Real-
time Systems. In: 10th Euromicro Workshop on Real Time System (1998)

[17] Lehoczky, J.P., Sha, L., Strosnider, J., Tokuda, H.: Fixed Priority
Scheduling Theory for Hard Real-time Systems. In: van Tilborg, A.M.,

Springer Nature 2021 LATEX template

Article Title 15

Koob, G.M. (eds.) Foundations of Real-Time Computing Scheduling and
Resource Management, pp. 1–30. Kluwer. 1991

	Introduction
	Background and Related Work
	Parallel Execution of Real-time Systems
	Feasibility Test for Parallel Systems
	Experimental Results
	Conclusion
	Declarations

