1 Wu, F. et al. A new coronavirus associated with human respiratory disease in China. Nature 579, 265-269, doi:10.1038/s41586-020-2008-3 (2020).
2 Gates, B. Responding to Covid-19 - A Once-in-a-Century Pandemic? N Engl J Med 382, 1677-1679, doi:10.1056/NEJMp2003762 (2020).
3 Wang, C., Horby, P. W., Hayden, F. G. & Gao, G. F. A novel coronavirus outbreak of global health concern. Lancet 395, 470-473, doi:10.1016/S0140-6736(20)30185-9 (2020).
4 Chan, J. F. et al. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg Microbes Infect 9, 221-236, doi:10.1080/22221751.2020.1719902 (2020).
5 Lurie, N., Saville, M., Hatchett, R. & Halton, J. Developing Covid-19 Vaccines at Pandemic Speed. N Engl J Med 382, 1969-1973, doi:10.1056/NEJMp2005630 (2020).
6 Grein, J. et al. Compassionate Use of Remdesivir for Patients with Severe Covid-19. N Engl J Med, doi:10.1056/NEJMoa2007016 (2020).
7 Hoffmann, M. et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 181, 271-280 e278, doi:10.1016/j.cell.2020.02.052 (2020).
8 Zhou, Y. et al. Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2. Cell Discov 6, 14, doi:10.1038/s41421-020-0153-3 (2020).
9 Gordon, D. E. et al. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature, doi:10.1038/s41586-020-2286-9 (2020).
10 Wishart, D. S. et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res 46, D1074-D1082, doi:10.1093/nar/gkx1037 (2018).
11 Cotto, K. C. et al. DGIdb 3.0: a redesign and expansion of the drug-gene interaction database. Nucleic Acids Res 46, D1068-D1073, doi:10.1093/nar/gkx1143 (2018).
12 Xiong, Y. et al. Transcriptomic characteristics of bronchoalveolar lavage fluid and peripheral blood mononuclear cells in COVID-19 patients. Emerg Microbes Infect 9, 761-770, doi:10.1080/22221751.2020.1747363 (2020).
13 Cameron, M. J. et al. Interferon-mediated immunopathological events are associated with atypical innate and adaptive immune responses in patients with severe acute respiratory syndrome. J Virol 81, 8692-8706, doi:10.1128/JVI.00527-07 (2007).
14 Lamb, J. et al. The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313, 1929-1935, doi:10.1126/science.1132939 (2006).
15 Yang, W. et al. Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res 41, D955-961, doi:10.1093/nar/gks1111 (2013).
16 Newman, A. M. et al. Robust enumeration of cell subsets from tissue expression profiles. Nat Methods 12, 453-457, doi:10.1038/nmeth.3337 (2015).
17 Tosolini, M. et al. Assessment of tumor-infiltrating TCRVgamma9Vdelta2 gammadelta lymphocyte abundance by deconvolution of human cancers microarrays. Oncoimmunology 6, e1284723, doi:10.1080/2162402X.2017.1284723 (2017).
18 Nirmal, A. J. et al. Immune Cell Gene Signatures for Profiling the Microenvironment of Solid Tumors. Cancer Immunol Res 6, 1388-1400, doi:10.1158/2326-6066.CIR-18-0342 (2018).
19 El Zowalaty, M. E. & Jarhult, J. D. From SARS to COVID-19: A previously unknown SARS- related coronavirus (SARS-CoV-2) of pandemic potential infecting humans - Call for a One Health approach. One Health 9, 100124, doi:10.1016/j.onehlt.2020.100124 (2020).
20 Sharifi, N. & Ryan, C. J. Androgen hazards with COVID-19. Endocr Relat Cancer 27, E1-E3, doi:10.1530/ERC-20-0133 (2020).
21 Reading, P. C., Moore, J. B. & Smith, G. L. Steroid hormone synthesis by vaccinia virus suppresses the inflammatory response to infection. J Exp Med 197, 1269-1278, doi:10.1084/jem.20022201 (2003).
22 Raaben, M. et al. The ubiquitin-proteasome system plays an important role during various stages of the coronavirus infection cycle. J Virol 84, 7869-7879, doi:10.1128/JVI.00485-10 (2010).
23 Meier, M. A. et al. Activation of the tryptophan/serotonin pathway is associated with severity and predicts outcomes in pneumonia: results of a long-term cohort study. Clin Chem Lab Med 55, 1060-1069, doi:10.1515/cclm-2016-0912 (2017).
24 Merad, M. & Martin, J. C. Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages. Nat Rev Immunol, doi:10.1038/s41577-020-0331-4 (2020).
25 Dove, B., Brooks, G., Bicknell, K., Wurm, T. & Hiscox, J. A. Cell cycle perturbations induced by infection with the coronavirus infectious bronchitis virus and their effect on virus replication. J Virol 80, 4147-4156, doi:10.1128/JVI.80.8.4147-4156.2006 (2006).
26 Wu, D. & Yang, X. O. TH17 responses in cytokine storm of COVID-19: An emerging target of JAK2 inhibitor Fedratinib. J Microbiol Immunol Infect, doi:10.1016/j.jmii.2020.03.005 (2020).
27 Ryang, J., Yan, Y., Song, Y., Liu, F. & Ng, T. B. Anti-HIV, antitumor and immunomodulatory activities of paclitaxel from fermentation broth using molecular imprinting technique. AMB Express 9, 194, doi:10.1186/s13568-019-0915-1 (2019).
28 Renis, H. E. Antiviral activity of cytarabine in herpesvirus-infected rats. Antimicrob Agents Chemother 4, 439-444, doi:10.1128/aac.4.4.439 (1973).
29 Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102, 15545-15550, doi:10.1073/pnas.0506580102 (2005).
30 Hanzelmann, S., Castelo, R. & Guinney, J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics 14, 7, doi:10.1186/1471-2105-14-7 (2013).