1. Nurk, S. et al. The complete sequence of a human genome. Science 376, 44-53 (2022).
2. Gershman, A. et al. Epigenetic patterns in a complete human genome. Science 376, eabj5089 (2022).
3. Altemose, N. et al. Complete genomic and epigenetic maps of human centromeres. Science 376, eabl4178 (2022).
4. Hoyt, S.J. et al. From telomere to telomere: The transcriptional and epigenetic state of human repeat elements. Science 376, eabk3112 (2022).
5. Vollger, M.R. et al. Segmental duplications and their variation in a complete human genome. Science 376, eabj6965 (2022).
6. Aganezov, S. et al. A complete reference genome improves analysis of human genetic variation. Science 376, eabl3533 (2022).
7. Rhie, A. et al. Towards complete and error-free genome assemblies of all vertebrate species. Nature 592, 737-746 (2021).
8. Cheng, H. et al. Haplotype-resolved assembly of diploid genomes without parental data. Nat Biotechnol 40, 1332-1335 (2022).
9. Jarvis, E.D. et al. Semi-automated assembly of high-quality diploid human reference genomes. Nature 611, 519-531 (2022).
10. Rautiainen, M. et al. Telomere-to-telomere assembly of diploid chromosomes with Verkko. Nat Biotechnol 41, 1474-1482 (2023).
11. Rhie, A. et al. The complete sequence of a human Y chromosome. Nature 621, 344-354 (2023).
12. Bernstein, B.E. et al. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57-74 (2012).
13. Guarracino, A. et al. Recombination between heterologous human acrocentric chromosomes. Nature 617, 335-343 (2023).
14. Liao, W.W. et al. A draft human pangenome reference. Nature 617, 312-324 (2023).
15. Jarmuz-Szymczak, M., Janiszewska, J., Szyfter, K. & Shaffer, L.G. Narrowing the localization of the region breakpoint in most frequent Robertsonian translocations. Chromosome Res 22, 517-32 (2014).
16. Wiedemar, N. & Drogemuller, C. A 1.8-kb insertion in the 3'-UTR of RXFP2 is associated with polledness in sheep. Anim Genet 46, 457-61 (2015).
17. Alberto, F.J. et al. Convergent genomic signatures of domestication in sheep and goats. Nat Commun 9, 813 (2018).
18. Zurano, J.P. et al. Cetartiodactyla: Updating a time-calibrated molecular phylogeny. Mol Phylogenet Evol 133, 256-262 (2019).
19. Walsh, A.M., Kortschak, R.D., Gardner, M.G., Bertozzi, T. & Adelson, D.L. Widespread horizontal transfer of retrotransposons. Proc Natl Acad Sci U S A 110, 1012-6 (2013).
20. Ivancevic, A.M., Kortschak, R.D., Bertozzi, T. & Adelson, D.L. Horizontal transfer of BovB and L1 retrotransposons in eukaryotes. Genome Biol 19, 85 (2018).
21. Bovine Genome, S. et al. The genome sequence of taurine cattle: a window to ruminant biology and evolution. Science 324, 522-8 (2009).
22. Adelson, D.L., Raison, J.M. & Edgar, R.C. Characterization and distribution of retrotransposons and simple sequence repeats in the bovine genome. Proc Natl Acad Sci U S A 106, 12855-60 (2009).
23. Dunlap, K.A. et al. Endogenous retroviruses regulate periimplantation placental growth and differentiation. Proc Natl Acad Sci U S A 103, 14390-5 (2006).
24. Melters, D.P. et al. Comparative analysis of tandem repeats from hundreds of species reveals unique insights into centromere evolution. Genome Biol 14, R10 (2013).
25. Safonova, Y. et al. Variations in antibody repertoires correlate with vaccine responses. Genome Res 32, 791-804 (2022).
26. Sok, D. et al. Rapid elicitation of broadly neutralizing antibodies to HIV by immunization in cows. Nature 548, 108-111 (2017).
27. Gilbert, M. et al. Global distribution data for cattle, buffaloes, horses, sheep, goats, pigs, chickens and ducks in 2010. Sci Data 5, 180227 (2018).
28. Qiu, Q. et al. The yak genome and adaptation to life at high altitude. Nat Genet 44, 946-9 (2012).
29. Rice, E.S. et al. Chromosome-length haplotigs for yak and cattle from trio binning assembly of an F1 hybrid. bioRxiv (2019).
30. Wurster, D.H. & Benirschke, K. Indian muntjac, Muntiacus muntjak: a deer with a low diploid chromosome number. Science 168, 1364-6 (1970).
31. Vassart, M., Seguela, A. & Hayes, H. Chromosomal evolution in gazelles. J Hered 86, 216-27 (1995).
32. Bovine HapMap, C. et al. Genome-wide survey of SNP variation uncovers the genetic structure of cattle breeds. Science 324, 528-32 (2009).
33. Kalbfleisch, T.S. et al. A SNP resource for studying North American moose. F1000Res 7, 40 (2018).
34. Cherry, S.G., Merkle, J.A., Sigaud, M., Fortin, D. & Wilson, G.A. Managing Genetic Diversity and Extinction Risk for a Rare Plains Bison (Bison bison bison) Population. Environ Manage 64, 553-563 (2019).
35. Theissinger, K. et al. How genomics can help biodiversity conservation. Trends Genet 39, 545-559 (2023).
36. Paez, S. et al. Reference genomes for conservation. Science 377, 364-366 (2022).
37. Koren, S. et al. De novo assembly of haplotype-resolved genomes with trio binning. Nat Biotechnol (2018).
38. Cheng, H., Concepcion, G.T., Feng, X., Zhang, H. & Li, H. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat Methods 18, 170-175 (2021).
39. Lasda, E. & Parker, R. Circular RNAs: diversity of form and function. RNA 20, 1829-42 (2014).
40. Rhie, A., Walenz, B.P., Koren, S. & Phillippy, A.M. Merqury: reference-free quality, completeness, and phasing assessment for genome assemblies. Genome Biol 21, 245 (2020).
41. Krefting, J., Andrade-Navarro, M.A. & Ibn-Salem, J. Evolutionary stability of topologically associating domains is associated with conserved gene regulation. BMC Biol 16, 87 (2018).
42. Sarni, D. et al. 3D genome organization contributes to genome instability at fragile sites. Nat Commun 11, 3613 (2020).
43. Eres, I.E., Luo, K., Hsiao, C.J., Blake, L.E. & Gilad, Y. Reorganization of 3D genome structure may contribute to gene regulatory evolution in primates. PLoS Genet 15, e1008278 (2019).
44. Torosin, N.S., Anand, A., Golla, T.R., Cao, W. & Ellison, C.E. 3D genome evolution and reorganization in the Drosophila melanogaster species group. PLoS Genet 16, e1009229 (2020).
45. Fudenberg, G. & Pollard, K.S. Chromatin features constrain structural variation across evolutionary timescales. Proc Natl Acad Sci U S A 116, 2175-2180 (2019).
46. Lazar, N.H. et al. Epigenetic maintenance of topological domains in the highly rearranged gibbon genome. Genome Res 28, 983-997 (2018).
47. Hafner, A. & Boettiger, A. The spatial organization of transcriptional control. Nat Rev Genet 24, 53-68 (2023).
48. Fortin, J.P. & Hansen, K.D. Reconstructing A/B compartments as revealed by Hi-C using long-range correlations in epigenetic data. Genome Biol 16, 180 (2015).
49. Dixon, J.R. et al. Chromatin architecture reorganization during stem cell differentiation. Nature 518, 331-6 (2015).
50. Oudelaar, A.M. & Higgs, D.R. Publisher Correction: The relationship between genome structure and function. Nat Rev Genet 22, 808 (2021).
51. Behrends, M. & Engmann, O. Loop Interrupted: Dysfunctional Chromatin Relations in Neurological Diseases. Front Genet 12, 732033 (2021).
52. Corbo, M., Damas, J., Bursell, M.G. & Lewin, H.A. Conservation of chromatin conformation in carnivores. Proc Natl Acad Sci U S A 119(2022).
53. Foissac, S. et al. Multi-species annotation of transcriptome and chromatin structure in domesticated animals. BMC Biol 17, 108 (2019).
54. Spielmann, M., Lupianez, D.G. & Mundlos, S. Structural variation in the 3D genome. Nat Rev Genet 19, 453-467 (2018).
55. Shanta, O., Noor, A., Human Genome Structural Variation, C. & Sebat, J. The effects of common structural variants on 3D chromatin structure. BMC Genomics 21, 95 (2020).
56. Anania, C. & Lupianez, D.G. Order and disorder: abnormal 3D chromatin organization in human disease. Brief Funct Genomics 19, 128-138 (2020).
57. Liao, Y., Zhang, X., Chakraborty, M. & Emerson, J.J. Topologically associating domains and their role in the evolution of genome structure and function in Drosophila. Genome Res 31, 397-410 (2021).
58. Farre, M. et al. Evolution of gene regulation in ruminants differs between evolutionary breakpoint regions and homologous synteny blocks. Genome Res 29, 576-589 (2019).
59. McArthur, E. & Capra, J.A. Topologically associating domain boundaries that are stable across diverse cell types are evolutionarily constrained and enriched for heritability. Am J Hum Genet 108, 269-283 (2021).
60. Sun, J.H. et al. Disease-Associated Short Tandem Repeats Co-localize with Chromatin Domain Boundaries. Cell 175, 224-238 e15 (2018).
61. Du, Q. et al. DNA methylation is required to maintain both DNA replication timing precision and 3D genome organization integrity. Cell Rep 36, 109722 (2021).
62. Liu, C., Cheng, Y.J., Wang, J.W. & Weigel, D. Prominent topologically associated domains differentiate global chromatin packing in rice from Arabidopsis. Nat Plants 3, 742-748 (2017).
63. Vujosevic, M., Rajicic, M. & Blagojevic, J. B Chromosomes in Populations of Mammals Revisited. Genes (Basel) 9(2018).
64. Brosius, J. Retroposons--seeds of evolution. Science 251, 753 (1991).
65. Kelly, C.J., Chitko-McKown, C.G. & Chuong, E.B. Ruminant-specific retrotransposons shape regulatory evolution of bovine immunity. Genome Res 32, 1474-86 (2022).
66. Casola, C. & Betran, E. The Genomic Impact of Gene Retrocopies: What Have We Learned from Comparative Genomics, Population Genomics, and Transcriptomic Analyses? Genome Biol Evol 9, 1351-1373 (2017).
67. Wei, Z. et al. RetroScan: An Easy-to-Use Pipeline for Retrocopy Annotation and Visualization. Front Genet 12, 719204 (2021).
68. Chen, Y. et al. Effect of high-fat diet on secreted milk transcriptome in midlactation mice. Physiol Genomics 49, 747-762 (2017).
69. Mumtaz, P.T. et al. Mammary epithelial cell transcriptome reveals potential roles of lncRNAs in regulating milk synthesis pathways in Jersey and Kashmiri cattle. BMC Genomics 23, 176 (2022).
70. Munch, E.M. et al. Transcriptome profiling of microRNA by Next-Gen deep sequencing reveals known and novel miRNA species in the lipid fraction of human breast milk. PLoS One 8, e50564 (2013).
71. Maningat, P.D. et al. Gene expression in the human mammary epithelium during lactation: the milk fat globule transcriptome. Physiol Genomics 37, 12-22 (2009).
72. Lemay, D.G. et al. Sequencing the transcriptome of milk production: milk trumps mammary tissue. BMC Genomics 14, 872 (2013).
73. Suarez-Vega, A., Gutierrez-Gil, B., Klopp, C., Tosser-Klopp, G. & Arranz, J.J. Variant discovery in the sheep milk transcriptome using RNA sequencing. BMC Genomics 18, 170 (2017).
74. Beckett, L. et al. Mammary transcriptome reveals cell maintenance and protein turnover support milk synthesis in early-lactation cows. Physiol Genomics 52, 435-450 (2020).
75. Arora, R. et al. Buffalo milk transcriptome: A comparative analysis of early, mid and late lactation. Sci Rep 9, 5993 (2019).
76. Tonegawa, S. Somatic generation of antibody diversity. Nature 302, 575-81 (1983).
77. Wang, F. et al. Reshaping antibody diversity. Cell 153, 1379-93 (2013).
78. Smider, B.A. & Smider, V.V. Formation of ultralong DH regions through genomic rearrangement. BMC Immunol 21, 30 (2020).
79. Ott, J.A. et al. Evolution of immunogenetic components encoding ultralong CDR H3. Immunogenetics 75, 323-339 (2023).
80. Clark, T.A. et al. Characterization of DNA methyltransferase specificities using single-molecule, real-time DNA sequencing. Nucleic Acids Res 40, e29 (2012).
81. Lee, W.C. et al. The complete methylome of Helicobacter pylori UM032. BMC Genomics 16, 424 (2015).
82. Payelleville, A. et al. The complete methylome of an entomopathogenic bacterium reveals the existence of loci with unmethylated Adenines. Sci Rep 8, 12091 (2018).
83. Rand, A.C. et al. Mapping DNA methylation with high-throughput nanopore sequencing. Nat Methods 14, 411-413 (2017).
84. Simpson, J.T. et al. Detecting DNA cytosine methylation using nanopore sequencing. Nat Methods 14, 407-410 (2017).
85. Tvedte, E.S. et al. Comparison of long-read sequencing technologies in interrogating bacteria and fly genomes. G3 (Bethesda) 11(2021).
86. Janowitz Koch, I. et al. The concerted impact of domestication and transposon insertions on methylation patterns between dogs and grey wolves. Mol Ecol 25, 1838-55 (2016).
87. Konstantinidis, I. et al. Major gene expression changes and epigenetic remodelling in Nile tilapia muscle after just one generation of domestication. Epigenetics 15, 1052-1067 (2020).
88. Guhlin, J. et al. Species-wide genomics of kakapo provides tools to accelerate recovery. Nat Ecol Evol 7, 1693-1705 (2023).
89. Lewin, H.A. et al. Earth BioGenome Project: Sequencing life for the future of life. Proc Natl Acad Sci U S A 115, 4325-4333 (2018).