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Abstract
Despite the manifestation and contribution of cellular senescence to tissue aging and aging-

related disease, the identification of in vivo senescent cells and the recognition of 

senescence-specific communication still remain challenging. Current senescence evaluation 

methods rely greatly on expression level of well-known senescence markers, enrichment of 

aging-related gene sets or weighted sum of curated genes. However, focusing on limited 

senescence aspects, these methods could not adequately capture the comprehensive 

senescence features. To evaluate senescence in a more general and unbiased way from the 

most common and easily accessible transcriptome data, we developed human universal 

senescence index (hUSI) to quantify human cellular senescence based on a series of 

weighted genes learned from representative senescence RNA-seq profiles using a machine 

learning algorithm. hUSI demonstrated its superior performance in distinguishing senescent 

samples under various conditions and robustness in handling batch effects and sparse 

profiles. hUSI could uncover the accumulation of senescent cells of various cell types in 

complex pathological conditions, and reflected the increasing senescence burden of 

patients and provided potential senotherapeutic targets. Furthermore, combined with 

gaussian mixture model, hUSI successfully inferred senescent tumor cells in melanoma and 

identified key target signaling pathways that are beneficial for patient prognosis. Overall, 

hUSI provides a valuable choice to improve our ability in characterizing cellular senescence 

under various conditions, illustrating promising implications in aging studies and clinical 

situations.
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1 Introduction
Cellular senescence (CS) characterized by irreversible cell cycle arrest is considered a 

critical factor for aging and aging-related diseases1. For instance, by presenting senescence-

associated secretory phenotypes (SASP) including increased secretion of pro-inflammatory 

proteins and other paracrine factors (such as TGF-β family ligands, VEGF, CCL2 and CCL20)2, 

senescent cells can stimulate immune response and cell-cell communication leading 

pleiotropic effects in various tissues3. Targeted clearance of accumulated senescent cells 

using senolytic drugs4 or inducing tumor cells into senescence5 have shown benefits for 

disease prognosis and healthy lifespan. However, despite several morphological (such as 

flattening and enlarging6) and molecular markers (such as p167, p218, p159 and p279) are 

used to characterize senescent cells, identification of in vivo senescent cells still pose a 

great challenge due to its heterogeneity10. Depending on the real situations, CS in diverse 

cell types can be induced by various intrinsic and extrinsic stressors, such as replicative 

stress, oncogene activation, chemotherapeutic drugs and ionizing radiation11. Therefore, to 

properly quantify CS degree in multiple scenarios, there is an urgent need for a universal 

method which enables sensitive capture of comprehensive senescence features, especially 

in the era where single-cell transcriptome technology has been widely applied to construct 

cell atlas of human multiple tissues12, 13. 

Quantifying senescence degree by senescence score is regarded as a convenient and 

efficient way to monitor senescence status and disease progression14. Considering there is 

no one-size-fits-all marker gene to exclusively indicate senescence, most attempts to 

evaluate senescent samples mainly depend on the expression level of aging or senescence 

associated genes derived from differential analysis and literature studies, giving rise to 

several aging or senescence-associated gene sets (such as CellAge15 and SenMayo16) and 

senescence scoring methods (such as DAS+MSS14, CS score17 and lassoCS18). However, due 

to the variation in gene composition and the limited study dataset (only focus on particular 

sample type or senescence type), these methods cannot reliably evaluate transcriptional 

signatures of senescent samples in various contexts and are susceptible to the absence of 

some pre-defined senescence-related genes. For example, only involving replicative 

senescence associated genes as the basis for scoring senescence status might produces 

bias in evaluating senescence in real aging tissues or induced senescence samples. Thus, 

we sought to utilize publicly available high-quality transcriptome profiles of senescent 

samples to learn the comprehensive senescence features and develop a reliable and 

universal senescence score for senescence evaluation. 

In the present study, to evaluate cellular senescence in a more general and unbiased way, 

we introduce hUSI that can accurately assess the burden of senescence at both bulk and 

single-cell levels. It started from collecting representative senescence transcriptome profiles 

encompassing multiple contexts, including those derived from different platforms, cell types, 

conditions, and senescence-induction factors. With the criteria of confirmed senescence 

status and involving diverse cell and senescence types, we finally collected bulk RNA-seq 

profiles from five cell types and six senescence types induced by both intrinsic and extrinsic 

stressors. Then, hUSI was developed based on features extracted from these representative 

senescence transcriptomes by a machine learning model. hUSI demonstrated high accuracy 

in distinguishing senescent samples from non-senescent samples in different context. 

Furthermore, hUSI outperformed other current methods in evaluating senescence at single-



cell level and remained robust and reliable in multiple senescence samples. Intriguingly, 

hUSI can uncover senescent cell subpopulation, as illustrated in melanoma, that correlated 

with improved patient survival, indicating its promising potential in clinical situations. 

Notably, hUSI distinguished typical signaling pathways (such as TGF-β and BMP pathways) 

that could promote senescence-associated cell-cell communication in tumor 

microenvironment. Overall, hUSI provides a universal and robust way to measure 

senescence burden, enabling more comprehensive investigations into senescence in 

various experimental and clinical context.

2 Results

Development and validation of hUSI

To systematically learn and evaluate the comprehensive signature of CS, we developed a 

workflow including data collection, data re-processing, feature extraction and quantification 

of senescence degree (Fig. 1a). We first collected RNA-seq data sets derived from 

representative human senescence types serving as senescence training samples, which 

encompassed five cell types (fibroblasts, endothelial cells, astrocytes, melanocytes, and 

keratinocytes) and six senescence types (ionizing radiation-induced senescence (IRIS), 

replicative senescence (RS), oxidative stress-induced senescence (OSIS), oncogene-induced 

senescence (OIS), natural senescence (NS) as well as compound-induced senescence (CIS)), 

along with the corresponding non-senescent samples serving as young controls19-27 

(Extended Data Fig.1a,b and Supplementary table S1). Next, considering these data sets 

were derived from different experimental methods and sequencing protocols, we re-

preprocessed all the raw data with the same pipeline to generate standard and normalized 

profiles for feature extraction and validation (Extended Data Fig.1b and Methods). After 

processing, we found that, as expected, CDKN1A and CDKN2B (encode the well-known 

senescence marker p21 and p15, respectively) showed significant higher expression level, 

demonstrating reliability of samples and the overall analysis pipeline (Fig. 1b).

Then, we went on to acquire features of the senescence profiles by machine learning 

algorithms. Multiple machine learning algorithms have been employed for mining genes 

associated with individual aging or CS, such as regression, elastic net, and random forests28-

30, facilitating quantification of senescence degree in tumor and normal cells. However, 

senescence, as a complicated and continuous state, its heterogeneity has not been fully 

considered in these models31. In this study, we selected one-class logistic regression (OCLR) 

algorithm to learn the features of senescence transcriptome profiles, as it has been 

demonstrated superior performance on capturing cell heterogeneity32. After training, OCLR 

learned the features of senescence samples in training set, in other words, all genes were 

respectively assigned with different weights representing their contributions to senescence 

(Methods). In our learned-senescence features, except for genes upregulated in CS and 

associated with SASP (such as APOD, EHF and SAA2)33-35 were assigned with top weights, 

some genes with high positive or negative weights while their functions in CS were poorly 

reported (such as OLAH, CADM3 and HMSD) (Extended Data Fig.1c). These results suggest 

that OCLR not only captures the known senescence features but also identifies potential 

novel senescence-associated genes. To our surprise, classical senescence marker, including 

CDKN1A, CDKN2B and SERPINE1, are only assigned with slightly positive weights, probably 

because of relatively low expression levels in samples (Supplementary table S2). To further 



examine the biological interpretability of learned-senescence features, gene set enrichment 

analysis (GSEA)36 was performed based on the weight of each gene (Methods). We found 

that multiple senescence associated gene sets were positively enriched, including 

interferon-gamma response37, KRAS signaling38, inflammatory response39, hypoxia and p53 

pathway40, 41 (Fig. 1c, left panel). On the contrary, the proliferation associated pathways 

(such as G2M checkpoint42, E2F targets43, mitotic spindles44 and MYC targets45) were in the 

negative enrichment terms (Fig. 1c, right panel). These results supported the reliability of 

the features learned by OCLR in reflecting senescence.

In terms of quantifying senescence degree, the Spearman correlation coefficient between 

gene weights and expression values was selected as the metric to quantify senescence 

degree, defined as human universal senescence index (hUSI) (Methods). To test the stability 

and reliability of hUSI, we used leave-one-out cross-validation (LOOCV) strategy to calculate 

average correctly rank probability (CRP) for each iteration, and the resulted CRP reached 

0.9 (Extended Data Fig.1b, d and Methods). We next validated whether hUSI can be 

influenced by batch effects arising from variations in experimental conditions, sequencing 

platforms, or analysis pipelines. We compiled bulk RNA-seq datasets from seven 

independent studies, each comprising oncogene-induced senescent IMR90 cells induced by 

4-hydroxytamoxifen (4-OHT), along with corresponding control cells24, 46-49 (Supplementary 

table S1). We calculated hUSI for each sample and found that all senescent groups have 

much higher hUSI values (hUSIs) than the non-senescent groups (Fig. 1d). Besides, with a 

plethora of genes included in the senescence features for calculation, hUSI is technically 

more robust to profiles with limited or sparse gene signals such as microarray and single-

cell RNA-seq (scRNA-seq) data. Therefore, we applied hUSI on six senescence-related 

microarray datasets and the most of them were derived from cell types which were not 

included in training set50-55. The results showed that hUSIs were consistently higher in all 

senescent groups compared to non-senescent ones (Extended Data Fig.2a). To test the 

robustness of hUSI, we generated simulated sparse profiles from these microarray 

transcriptome profiles by randomly zeroing-out expression signals. We found that even 

zeroing-out 50% of genes expression signals, hUSIs still represented higher levels in all 

senescent groups (Extended Data Fig.2b). All these results suggested that hUSI, based on 

comprehensive senescence features and effective nonparametric rank-based correlation56, 

is pretty stable and robust.

hUSI shows reliable performance in quantifying senescence degree

To assess the generalizability of hUSI, we gathered three bulk RNA-seq datasets (including 

immortal MDAH04 cells and senescent MDAH04 cells induced by different chemical 

compounds57, WI-38 cells treated with 4-OHT for different days58 and proliferative WI-38 

cells and senescent WI-38 cells induced by replication58), notably the conditions of these 

samples are not exactly same as samples in the training set (Supplementary table S1). We 

found that most senescent groups exhibited significant higher hUSIs compared to non-

senescent ones even the sample size is limited (Extended Data Fig.2a). Moreover, hUSI also 

demonstrated its ability to discern aggravated senescence in samples induced by extended 

4-OHT exposure time (Fig. 1e, middle panel). 

Next, we calculated hUSIs for a large normal samples dataset obtained from the Genotype-

Tissue Expression Project (GTEx). We observed that hUSIs progressively and significantly 



elevated with increasing age, consisting with the continuous accumulation of senescent 

cells in aging process59 (Fig. 2a). To validate the reliability of hUSI in assessing senescence 

degree, we calculated Spearman correlation coefficient between hUSIs and CS scores, which 

was a tool based on conducting gene set variation analysis (GSVA) on a curated set of 1,259 

genes derived from studies on replicative cell senescence17. The results showed overall 

positive correlations of these two methods (R = 0.7), and across 29/30 tissues (R from 0.28 

to 0.85) (Fig. 2b left panel and Fig. 2c upper panel). The same strategy was applied on a 

large tumor samples dataset from The Cancer Genome Atlas (TCGA) datasets. Despite the 

heterogeneity in tumor samples, hUSIs still showed overall positive correlations with CS 

scores (R = 0.52) and across all cancer types (R from 0.12 to 0.94) (Fig. 2b right panel and 

Fig.2c lower panel). Of note, we discovered that hUSIs demonstrated higher variations in 

different cancers compared to CS scores, which might indicate that hUSI enables to reveal 

more intrinsic heterogeneity of senescence across different tumor types (Fig. 2c lower 

panel).

hUSI has better performance in distinguishing senescence cells

Given the reliable and robust performance of hUSI on scoring bulk samples under various 

conditions, we next applied hUSI on four scRNA-seq datasets derived from primary 

senescent cells induced by various stressors (including oncogene49, 60, radiation61, and 

replication61, as well as secondary senescent cells triggered by paracrine signals62) to assess 

the robustness of hUSI at single-cell level across diverse conditions. The senescence status 

of these cells had been confirmed in respective studies by examining senescence marker 

genes and senescence-associated β-galactosidase (SA-β-Gal) staining49, 60-62 

(Supplementary table S1). Non-senescent cells from each dataset were also included for 

comparative analysis. After quantifying the senescence degree of each cell using hUSI, we 

observed significantly higher hUSI levels in senescent groups than non-senescent groups 

across all four datasets, supporting the applicability of hUSI on scRNA-seq data (Fig. 3a). 

Next, we compared the performance of hUSI with other three groups of senescence 

qualification strategies (including those based on gene expression level, computed score 

and enrichment score of single sample GSEA (ssGSEA)) (Methods). 

First, we first obtained 12 well-known CS or proliferation associated markers (GLB1, TP53, 

CDKN1A, CDKN2A, CDKN2B, CDK1, CDK4, CDK6, MKI67, LMNB1, IL1A, and RB1) and 

separately used their normalized expression values to directly classify cells, as their 

upregulation or downregulation is widely employed to identify CS status63-71. We found that 

only CDKN1A exhibited a higher trend in senescent samples than control samples across all 

datasets (Extended Data Fig.3a, left panel). To better compare the performance of hUSI and 

the markers in classifying senescent cells in limited scRNA-seq datasets, we randomly split 

each dataset into 10 folds and replicated the process three times, and then calculated the 

ranks of average Area Under Curve (AUC) of all units in each dataset (Supplementary table 

S3 and Methods). We observed that hUSI exhibited excellent performance compared to all 

the tested classical markers (Fig. 3b, left panel and Supplementary table S3). 

Second, we compared hUSI with five existing senescence score computing methods, 

including DAS, mSS and their combination (DAS+mSS)14, lassoCS18 and CSS28. To our 

surprise, these methods only gave senescent group a higher score level than control group 

in certain datasets (Extended Data Fig.3a, middle panel). We then applied the same strategy 



above to calculate average AUC ranks. hUSI also achieved the highest average AUC rank 

compared to all computed senescence scores (Fig. 3b, middle panel). Additionally, we 

observed that DAS+mSS, as expected, outperformed both DAS and mSS individually (Fig. 

3b, middle panel). Of note, except for hUSI, all these methods exhibited substantial 

variations across four datasets (Fig. 3b, middle panel), supporting the more stable 

performance of hUSI.

Finally, considering aging and senescence-associated gene sets have been commonly used 

to quantify CS by enrichment score using ssGSEA, in the present study, we collected eight 

publicly available senescence-associated gene sets (including CellAge15, GenAge72, ASIG73, 

SASP (downloaded from MSigDB under acessesion ID R-HSA-2559582), AgingAtlas74, 

SenUp75,SenMayo16,  and SigRS76) to calculated their ssGSEA scores in four scRNA-seq 

datasets (Supplementary table S4). The result showed that only SenUp gave higher scores 

for senescent groups than control groups across four scRNA-seq datasets (Extended Data 

Fig.3a, right panel). After calculating average AUC ranks, hUSI still exhibited superior 

performance over all gene sets, with minimal variation observed across the four single-cell 

datasets (Fig. 3b, right panel). Furthermore, we found that genes from all these gene sets 

can be found in our features, and genes had been assigned with different weights which 

enable hUSI to capture a broader spectrum of gene expression signals in the senescence 

evaluation process (Supplementary table S2,4). These results above combined to suggest 

that hUSI has relative superiority and stability across different scRNA-seq datasets 

comparing to other current methods.

hUSI enables to evaluate senescence burden in complex conditions

After validating the outperformance of hUSI in distinguishing senescent cells, we next 

sought to apply hUSI on single-cell data from real pathological tissues. The accumulation of 

senescent cells has been reported to increase the susceptibility to COVID-19 patients by 

contributing to SARS-CoV-2-mediated hyperinflammation and cytokine storm77, 78. 

Consequently, the targeted elimination of these senescent cells has been proposed as a 

potential treatment strategy for COVID-1977, 78. However, the deconvolution of senescent 

status across various cell types in infected lung tissues and the study of detrimental effects 

of different senescent cells on patient survival are still lack. Thus, to evaluate the 

senescence burden of COVID-19 patients, we calculated the hUSIs for a single-nuclei RNA-

seq (snRNA-seq) dataset (containing a total of 116,313 nuclei) derived from infected and 

normal lungs with donor age ranging from 58~84 years old79 (Fig. 3c and Methods). We 

found that most cell types (including epithelial cells, endothelial cells, fibroblasts, myeloid, 

and neuronal cells) from COVID-19 patients exhibited significantly higher hUSI values 

compared to those from normal donors (Fig. 3d). Intriguingly, a reverse trend was observed 

in B cells and T cells, suggesting the activation of immune cells following COVID-19 

infection80 (Fig. 3d). 

To better discern various senescence status, we applied a gaussian mixture model (GMM) 

to fit the distribution of hUSIs within all tested cells and successfully classified them into 

four distinct classes (C1~C4) (Fig. 3e, left panel and Methods). Their senescence degrees 

were further validated by the higher expression level of classical senescence-associated 

genes (CDKN1A, IL1A, IL6, IL8, CCL2, CXCL10, MMP9, SERPINE1, THBS1 and TIMP1) and 

lower expression level of proliferation markers (LMNB1, MKI67 and DHFR), consisting with 



the reported elevated cell senescence responses to SARS-Cov-2 infection81 (Fig. 3e, right 

panel). We also observed that COVID-19 lung tissue has a higher proportion of the most 

senescent cell class (denoted as C4) cells compared to normal tissue (Fig. 3f), consistent 

with the reports suggesting a high accumulation of senescent cells in COVID-19 patients77, 

82. Besides, patients with faster disease progression showed more accumulation of 

senescent cells (Fig. 3g). These results all suggested that hUSI successfully revealed 

survival-detrimental senescent cells accumulated in COVID-19 lung tissue across various 

cell types。

We then examined the difference in the fraction of four cell groups for each cell type 

between COVID-19 and the normal samples. The results showed there are higher fractions 

of senescent cells existed in the cell types with a higher risk of exposure to SARS-CoV-2 or 

hyperinflammatory microenvironment, such as monocyte-derived macrophages, inflamed 

endothelial cells, pathological fibroblasts and alveolar type 1 progenitor cells (AT1) (Fig. 3h 

and Extended Data Fig.4a, b)78, 83-85. While alveolar type 2 progenitor cells (AT2), which are 

targeted by SARS-CoV-2 through the angiotensin-converting enzyme 2 (ACE2), was reported 

to exhibit apparent senescence and a proinflammatory phenotypes86, AT1 accumulated in 

a higher proportion in COVID-19 lung tissue than AT2, possibly because AT2 can differentiate 

into AT1-like cells for alveolar regeneration in COVID-19 patients87. 

To investigate the alterations in senescent cells, we performed differential gene expression 

analysis between C4 and C2 (which is the second young class (Fig. 3f)). We did not take C1 

class as the control due to its very small cell numbers, which usually lead to some bias in 

differential analysis.  Differential genes (DEGs) of AT1 and AT2 were respectively enriched 

on KEGG and GO databases. The results showed that senescent AT1 and AT2 cells have 

enriched on pathways associated with antigen process, extracellular matrix and immune 

cytotoxicity, especially AT1 has enriched on p53 signaling pathway, indicating a higher 

relevance of these senescent on infection response, cellular communication and cellular 

senescence (Fig. 3i and Extended Data Fig.4c). In addition, DEGs were also enriched in 

senescent monocyte-derived macrophages as it showed largest fraction difference in C4, 

reaching 0.29, and was reported to drive the inflammatory response to SARS-CoV-2 and 

contribute to cytokine storms in severe COVID-1988, 89. The results showed that pathways, 

including positive regulation of T cell-mediated immunity and leukocyte-mediated 

cytotoxicity, was enriched in these cells, indicating their crucial roles of senescent cells in 

macrophage-mediated clearance of infected cells, which may also cause damages to 

infected tissues by hyperinflammatory90 (Extended Data Fig.4d). All these results above 

demonstrated that hUSI enables to recognize senescent cells that abnormally accumulated 

in pathological tissue and reveal associated mechanisms. 

hUSI identifies immune associated senescent tumor cells in melanoma

We then sought to apply it on tumor samples, as CS plays an important role in tumor 

development and can activate immune responses91. Significant progress has been made in 

immunotherapy of melanoma, especially with the application of immune checkpoint 

inhibitors, such as PD-1 antibodies and CTLA-4 antibodies, which result in significant durable 

responses and therapeutic efficacy92, 93. However, the mechanisms underlying 

immunotherapy remain incompletely understood. Several studies have demonstrated the 

relationship between senescent tumor cells and immune recognition94-97, thus we sought to 



identify senescent tumor cells and investigate whether it could serve as potential targets 

for immunotherapy in melanoma. 

To explore the characteristics of senescent tumor cells in melanoma, we evaluated the 

senescence degree of tumor cells by applying hUSI on a melanoma scRNA-seq data set98. 

We then used GMM to infer three cell subpopulations which were denoted as cycling, 

transactional and senescent, based on the significantly increasing hUSI level (Extended Data 

Fig.5a, b). The senescence degree of these subpopulations was further validated by a 

microarray-based transcriptome dataset of melanocytes52. By overlapping DEGs of 

melanocytes bulk samples with specific highly expressing genes in our defined cell 

subpopulations (Methods), we found that genes up-regulated in senescent melanocytes 

were significantly enriched in senescent and transitional subpopulations (Fig. 4a and 

Supplementary table S5). On the contrary, genes up-regulated in growing melanocytes were 

significantly enriched only in cycling subpopulation (Fig. 4a and Supplementary table S5). 

We also validated the different senescence degree of these three subpopulations by 

inferring a senescence trajectory of tumor cells. We imputed 38 co-expression modules 

based on hUSI-related genes and diffusion map was used for dimensionality reduction and 

visualization. The senescence trajectory was characterized by the transition of tumor cells 

from cycling to senescent status (Fig. 4b and Extended Data Fig..5c, d and Methods). Two 

well-known senescence hallmark genes, CDKN1A and SERPINE1, showed higher expression 

level in senescent subpopulation than in the other two subpopulations (cycling and 

transitional) (Fig. 4c). Moreover, GSEA results of specific highly expressing genes in each 

subpopulation indicated more frequent immune activities occurred in senescent tumor cells 

(Fig. 4d and Methods). These results demonstrated that heterogeneity in senescence 

existed among melanoma tumor cells, and hUSI can reliably distinguish senescent tumor 

cells.

We next analyzed the impact of senescent tumor cells on melanoma patient survival. We 

took three tumor cell subpopulations as a reference expression profile and deconvoluted 

RNA-seq profiles of melanoma cohort from TCGA-SKCM using EpiDISH99, obtaining the 

proportion of each subpopulation in each melanoma patient (Methods). Considering the 

potential relationship between senescent tumor cells and immune response, we also 

calculated abundances of 22 immune component using CIBERSORT100. We found that the 

proportion of senescent subpopulation have a higher positive correlation with the 

abundance of M1 macrophage cells, CD8 T cells, and activated immune cells (including 

activated CD5 memory T cells and activated dendritic cells) (Fig. 4e). Survival analysis was 

then performed based on the inferred proportions of these subpopulations. The result 

showed that the higher proportion of senescent or transactional subpopulations in a patient, 

the more favorable it was for the patient’s survival, and the significance of senescent is 

higher than transactional (Fig. 4f). In contrast, patients with higher proportion of cycling 

subpopulation have worse prognosis (Fig. 4f and Extended Data Fig.5e). These results 

suggested that hUSI-aided senescence state evaluation of tumor cells can serve as a 

promising prognostic biomarker for melanoma patients.

hUSI recognizes special signaling pathways in senescent melanoma cells 

In the above analysis, hUSI helps identify senescent tumor cells in melanoma. However, the 

role of senescent cells in tumor microenvironment is very complex and highly dependent on 



the physiological environment101-103. Senescent cells can communicate with neighbor cells 

and influence their behavior through paracrine signaling. Specifically, SASP presented by 

senescent tumor cells plays important roles in communication with immune system by 

attracting immune cells (such as T cells and NK cells) and then leading to the clearance of 

senescent tumor cells95-97. Besides, CS associated communication had been speculated to 

regulate immune surveillance and influence tumorigenesis104. Therefore, understanding 

how senescent cells interact with the microenvironment may provide additional clues for 

the relationship between senescence and tumorigenesis. 

To explore the cross-talk between senescent tumor cells and the microenvironment in 

melanoma, we investigated the cell-cell communication between these three tumor cell 

subpopulations (cycling, transactional and senescent) and their neighboring cells using 

CellChat105 (Fig. 5a). The results showed that the communication strength of hUSI-identified 

senescent subpopulation was higher than the other two relatively less senescent tumor cell 

subpopulations (cycling and transactional), indicating stronger cell-cell communication 

between senescent tumor cells and neighboring cells (Fig. 5b and Extended Data Fig.5f). 

Furthermore, analysis of the global output communication patterns uncovered two different 

signaling patterns, with pattern 1 corresponding to the senescent tumor subpopulation and 

pattern 6 corresponding to the cycling and transitional subpopulations (Extended Data 

Fig.5g). To analyze which pathways were responsible for senescent tumor cells to receive 

communication signals from tumor microenvironment, we compared communication 

strength of each involved signaling pathway (Methods). Six pathways (including 

transforming growth factor β (TGFβ) pathway, leptin (LEP) pathway, chondroitin sulfate 

proteoglycan 4 (CSPG4) pathway, chemokine signaling pathways (CCL), CD6 pathway and 

bone morphogenetic protein (BMP) pathway) were found to have input signal strength to 

senescent subpopulation and not detected in cycling subpopulation, indicating that these 

signaling pathways are more likely to specifically function in senescent tumor cells (Fig. 5c). 

In the two major pathways, TGF-β can induce senescent phenotype of tumor cells, which is 

secreted by macrophages originating in tumor stroma106, 107, and BMP is a family of TGF-β 

superfamily, which has similarly been found to induce senescence of tumor cells108, 109. 

Through signaling pathways pathway network, we found that senescent tumor cells receive 

TGF-β from macrophages (Fig. 5d), which is consistent with previous report in lymphoma107. 

Interestingly, senescent tumor cells received more TGF-β from cancer-associated fibroblasts 

(CAFs) (Fig. 5d). This may indicate that as a solid tumor, melanoma differs from lymphoma 

in microenvironment by the presence of a high number of fibroblasts. Moreover, senescent 

tumor cells received BMP from a variety of cell types in the microenvironment, of which the 

signal from T cells was the strongest (Fig. 5d). Further investigation of ligand-receptor 

interactions in signaling pathways revealed that the expression level of genes encoding 

receptors for TGF-β and BMP were higher in senescent subpopulation than in cycling and 

transitional subpopulations, with TGFBR2 and BMPR1B showing more significant differences 

among these three subpopulations (Fig. 5e). In addition, survival analysis performed on 

TCGA-SKCM also showed that patients with higher expression level of TGFBR1, TGFBR2 and 

BMPR2 have better prognosis (Fig. 5f), consistent with the idea that stronger interactions by 

these pathways between senescent tumor cells and microenvironment could benefit patient 

survival. 



We also noticed the other four signaling pathways which are also specific for senescent 

tumor cells. While transitional and senescent subpopulation interact with T cell by LEP 

signaling pathway and with CAFs by CSPG4 signaling pathway, the receptors involved in 

these two pathways did not show significant difference (Extended Data Fig.6a). Notably, 

senescent subpopulation interacts with T cell by CD6 signaling pathway and with 

macrophages by CCL signaling pathway. CD6 receptor encoding gene ALMCAM and CCL 

receptor encoding gene CCR10 are specifically highly expressed in senescent subpopulation 

and benefit patients’ survival (Extended Data Fig.6b, c). Although, these signaling pathways 

are reported associated with tumor progression110-113, their functions on tumor cell 

senescence need further study. Overall, these results highlight the clinical value of hUSI in 

identifying senescent tumor cells and the potentially involved signaling pathways. 

3 Methods
Data collection. Bulk RNA-seq datasets used for extraction of senescence features were 

collected from previously published papers19-27. We downloaded raw files from SRA 

database (https://www.ncbi.nlm.nih.gov/sra) (GSE53356, GSE56293, GSE58910, GSE61130, 

GSE63577, GSE64553, GSE113957, GSE130727, and GSE60883) and EMBL-EBI 

(https://www.ebi.ac.uk/ebisearch/about) (E-MTAB-5403). Only samples with confirmed 

senescence status were selected to build the representative senescence profiles. We also 

included corresponding non-senescent samples in each dataset for LOOCV. Seven 

microarray profiles used for batch effects test were download from Gene Expression 

Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/) (GSE101750, GSE101758, 

GSE61130, GSE122079, GSE113060, GSE72407, and GSE72404). The RNA-seq and 

microarray profiles of independent validation datasets were also downloaded from SRA 

database through GEO accession numbers: GSE60340, GSE130306, GSE19864, GSE16058, 

GSE83922, GSE11954, GSE100014, and GSE77239. Four scRNA-seq profiles used for 

benchmarking were downloaded from GEO (GSE119807, GSE115301, GSE94980, and 

GSE81547). More details of datasets mentioned above can be found in Supplementary Table 

S1.  

The TPM normalized gene expression matrix, of which, TCGA was collected from UCSC Xena 

(http://xena.ucsc.edu/public/), and GTEx was collected from GTEx Portal (version 8) 

(https://www.gtexportal.org/home/downloads/adult-gtex). The raw single-nuclei counts 

matrix of normal and COVID-19 patients’ lung tissues and the processed melanoma profiles 

were also respectively downloaded from GEO under accession numbers GSE171524 and 

GSE72056.

Bulk RNA-seq data of training set processing. We used Prefetch v.3.0.2 to download 

SRA files and split them into FASTQ files by parallel-fastq-dump v.0.6.5. TrimGalore v.0.6.6 

was used to filter out low quality reads and bases in 3’ end for the consequential alignment 

performed by STAR v.2.2.1. We chose GRCh38 as reference genome sequence and only 

unique mapping reads were included. StringTie was used to qualify the gene expression 

level and normalize values by TPM (transcripts per million). Only protein coding genes 

(annotated by gencode v.31) with TPM >3 in 99% samples were included for next analysis. 

Considering bias introduced by batch effect, we also used log space transform to further 

reduce the disturbance for feature extraction.

https://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/geo/
http://xena.ucsc.edu/public/
https://www.gtexportal.org/home/downloads/adult-gtex


Quantification of cellular senescence based on OCLR. To quantify CS based on gene 

expression level, a predictive model was built using OCLR32 in R package “gelnet” with the 

parameters y=NULL, l1=0, and l2=1. The input expression matrix of senescent cells was 

normalized by subtracting mean expression value across all samples. The Spearman 

correlation coefficient was defined as hUSI as its stable performance for minimizing possible 

batch effects across datasets114. Normalized gene expression matrix was used to calculate 

hUSI. 

Gene set enrichment analysis for learned-senescence features. Hallmark gene sets 

from The Molecular Signatures Database (MSigDB) database were included to perform GSEA 

for genes in OCLR learned-features which were sorted by their weights. Normalized 

enrichment score (NES) calculated by R package “fgsea”115 was chosen to compare the 

enrichment degree in different gene sets. 

Performance evaluation of hUSI. The reliability of the acquired feature and 

quantification strategy were validated using LOOCV. For each training round, we excluded 

one senescent sample in our training set and trained the model to extract senescence 

features. Then hUSI was calculated based on features to score the leave-out sample as well 

as all the non-senescent samples. Finally, the probability that the score of senescent 

samples is higher than that of non-senescent samples116 was used to measure the 

performance, denoted as correctly ranking probability (CRP). For the four scRNA-seq 

datasets GSE119807, GSE115301, GSE94980, and GSE81547 ) used for comparison of three 

types of scoring methods, the expression matrix was read and normalized using R package 

“Seurat”. Then, log-normalized gene expression value was used for directly classifying 

senescent cells or calculating senescence score. ssGSEA score for each gene set was 

produced by “gsea()” function in the R package “GSVA”. To better compare the performance 

of all scoring methods in four single-cell datasets, we randomly divided each dataset into 

10 subsets and repeated for 3 times by “createMultiFolds()” function in R package “caret”, 

finally generating 30 data units in total. For each of the 30 data units, we computed the AUC 

based on the scores generated by the tested methods described below by “auc()” function 

in R package “pROC”. For the expression level of marker genes, the parameter “direction” 

was not assigned as these genes were reported up or down regulated in senescent cells. 

For the computed senescence score and ssGSEA score, we set the parameter “direction=<” 

to make sure it will have a higher AUC only if these scores are lower in non-senescent 

samples. We calculated the average AUC of all 30 units and ascendingly ranked the average 

AUCs derived from each method group for each dataset. The mean average AUC rank across 

four datasets was used to reflect their overall performance (Supplementary Table S3). 

Inference of cellular senescence states. For a large number of single cells, we adopted 

a GMM framework117 to infer the number of potential senescence states according to the 

distribution of hUSI. Log transformation was firstly performed on the hUSI of each cell, that 

is, Logit(hUSI) = log2[(1+hUSI)/(1-hUSI)]. The Logit(hUSI) values of all cells were then fitted 

under the framework of GMM (implemented in R package “mclust”), and the Bayesian 

information criterion (BIC) was used to estimate the optimal number of senescence states 

and the probability that each cell belonged to a specific state118.

Analysis of snRNA-seq data of COVID-19 infected samples. The raw expression matrix 

was read using Python module "scanpy" to filter out low quality cells (min_genes=200 and 



min_cells=3). After removing mitochondrial and ribosomal genes, the expression matrix was 

normalized, and the highly variable gene matrix was considered for downstream scaling, 

batch effect removing and visualization. The "rpy2" module was used to call the "mclust" R 

package in python for cellular senescence state classification. GSEA for DEGs of senescence 

class was performed by python module “gseapy”119 using log2-transformed Fold-Change as 

ranking metric.

Analysis of scRNA-seq data of melanoma samples. The processed melanoma single-

cell matrices, retaining only defined tumor cells (malignant==2) and non-tumor cells 

(malignant==1) (including T-cells, B-cells, macrophages, endothelial cells, cancer-

associated fibroblasts and natural killer cells), were read, analyzed and visualized using the 

R package "Seurat". To validate the reliability of inferred tumor subpopulations, specifically 

highly expressing genes (logfc.threshold > 0.1) of each subpopulation were overlapped with 

DEGs derived from melanoma microarray data (senescent vs young), which were calculated 

by linear models “lm(gene expession~pheno)”. R function “phyper()” was used to test the 

overlapping significance. To observe the positional relationships of the different 

subpopulations of CS states on projected space, for each gene, we calculated the Pearson 

correlation coefficient between hUSIs and gene expression values of all cells, and the top 

1500 genes ranked by absolute correlation coefficient values were selected as hUSI related 

genes. Then, using the tool ICAnet120, the tumor cells were integrated based on the 38 co-

expression modules of the above hUSI related genes. Diffusion map based on five principal 

components of 38 co-expression modules was used to further reduce the dimension and 

infer senescence trajectory using R package “destiny”121. Specifically highly expressed 

genes (logfc.threshold > 0.1) of tumor subpopulation were enriched using R package 

“clusterProfiler ”122 on the database Gene-Ontology (GO), Kyoto Encyclopedia of Genes and 

Genomes (KEGG), using log2-transformed Fold-Change as the ranking metric. Cell 

communication analysis was carried out using R package “CellChat”, and the 

communication intensity between tumor subpopulations and different non-tumor cell types 

in a signal network was quantified105. When filtered pathways specific for senescent tumor 

cells, we set three tumor subpopulations as “target” and T cell, NK cell, macro cell and CAF 

cell as “source”. 

Data analysis of melanoma patient cohort in TCGA. The normalized Level 3 RNA-seq 

data of a melanoma patient cohort (SKCM) with associated clinical data were downloaded 

from the TCGA (the Cancer Genome Atlas) database using R package TCGAbiolinks123. To 

analyze the proportion of cells with different senescence degree, three tumor 

subpopulations were used as reference to deconvolute the RNA-seq data of the SKCM 

patient cohort using EpiDISH99. The abundance of the 22 immune components were 

calculated by CIBERSORT100. Survival analysis was performed using R packages “survival” 

and “survminer” with “OS = vital_status” and “OS.time = days_to_last_followup”.

4 Discussion
Though the characterization, identification, and pharmacological clearance of senescent cell 

are the basics of many senotherapies, the relative scarce of specific and efficient 

senescence marker keeps limiting the study of distinguishing and targeting senescent cells 

both in vitro and in vivo1, 10, 124, 125. Additionally, in single-cell studies, the differential 



expression level of a single senescence marker is insufficient to identify senescent cells due 

to the heterogeneity of both cell types and senescence status64. Besides, apart from the 

absence or low expression of certain senescence markers, the possibility of improperly 

calculating senescence score in some methods also exists due to the absent detection or 

abnormal expression of key senescence genes. For example, in lassoCS18 method, three out 

of ten genes (SEMA3G, PCSK6, and SLC44A4) are assigned with weight values for 

senescence score calculation, while they are absent when we applied it to another single-

cell dataset48. Taking gene sets into consideration, while the enrichment score generated 

by GSEA or GSVA is widely utilized, different gene sets usually emphasize on different 

aspects of senescence. For instance, the SASP gene set focuses on the activated secretory 

phenotype, whereas signature of replicative senescence76 specifically considers replicative-

related changes. Notably, performing GSEA in large-scale single-cell atlases can be 

exceedingly time-consuming, due to the substantial number of permutations required to 

accurately estimate the nominal p-value126.

To overcome these challenges above, the present study adopted OCLR machine learning 

algorithm32 to acquire gene expression features of CS in relatively comprehensive 

senescence transcriptome profiles. Based on OCLR machine learned-features, we developed 

hUSI, a scoring method using Spearman correlation coefficient that can distinguish 

senescent samples or cells induced by different factors while less affected by batch effect. 

We validated the generalizability of hUSI by applying it to datasets of variety origins 

encompassing platforms, cell types, or induction factors that were not included in the 

training set. Moreover, the stability and the potential application of hUSI on single-cell data 

were further validated by simulated sparse profiles and real scRNA-seq profiles. 

Comparing with other currently available methods (including those based on senescence 

markers expression level, computed senescence score and ssGSEA score), hUSI manifested 

its reliability and superior performance in senescence evaluation. Unlike methods that rely 

on limited genes, hUSI takes14,638 protein-coding genes assigned with different weights 

learned by OCLR into senescence evaluation, which reduces bias when evaluating CS of 

distinct senescence types. Importantly, hUSI demonstrated reliable performance when 

applied to samples derived from both health and disease populations. 

Combination of hUSI with GMM provided a framework to reveal cell classes with different 

senescence level. hUSI identified sell types showing higher accumulation of senescent cells 

in COVID-19-infected lung tissue and provided a potential therapeutic avenue for selectively 

eliminating these senescent cells to mitigate senescence-induced hyperinflammation in 

COVID-19 patients82. For example, navitoclax, a senolytic drug, has been reported to target 

senescent alveolar epithelial cells and macrophages, and in turn reduces the secretion of 

pro-inflammatory SASP factors after SARS-CoV-2 infection81. Thus, our ongoing research will 

center on integrating senescence quantification into the cellular response to drugs to unveil 

the contribution of senescent cells to both drug resistance and drug sensitivity across 

various diseases.

By investigating the communication network of melanoma cells of different senescence 

degree, combing with previous studies106, 107, we hypothesize that senescent tumor cells 

can interact with tumor microenvironment by TGF-β and BMP signaling pathways in 

melanoma microenvironment and contribute to anti-cancer effects. TGF-β is well known 



being associated with the upregulated expression of p15, p21, and p27, which are known 

senescence markers and can inhibit cell proliferation127. BMP, a member of TGF-β family, 

has also been reported having a crucial role in paracrine induction in senescent cells108, 109. 

We observed higher expression level of genes encoding TGF and BMP receptors in senescent 

cells, which support their specifical functions in senescence of tumor cells. 

Although hUSI has demonstrated superior performance in multiple aspects, we must admit 

that there are still some limitations in current status. First, though the stability of hUSI has 

been demonstrated by LOOCV and independent datasets, with more data coming in the big 

data era, the quality and quantity of training sets still has room for further improvement to 

optimize the performance of hUSI in the future. Second, cell-cell interactions networks are 

dynamic and intricate, no matter among senescent cells in different cell types or between 

senescent cells and non-senescent cells. However, in this study, we simplified the 

interactions networks by only focusing on senescent tumor cells due to the limited cell 

numbers of other cell types. Besides, the causal relationship between signaling pathways 

and the mechanism of how senescent tumor cells response to different signals also require 

further study. Third, hUSI was a human transcriptome-based scoring method. Although, 

using homologous genes when applied to other species is a feasible way, the reliability and 

the accuracy need extensive validation. We also believed senescence scoring tool can be 

developed based on transcriptomes of interested species following our stagey. Finally, with 

implementation of quantifying CS degree, a more detailed and standardized CS atlas 

supported by adequate experimental and multi-omics evidence is demanding to benefit the 

prevention of aging-related diseases and the application of senotherapeutics. 

5 Conclusion
In summary, we developed a senescence-evaluating tool that outperforms currently existing 
analogous methods, capable of robustly quantifying sample senescence degree based on 
bulk or single-cell transcriptome profiles. We also proposed a framework for classifying the 
senescence status of various cell types and recognizing senescence-specific intercellular 
communications. Based on the outperformance and applicability of hUSI, we believe that it 
will greatly help to evaluate senescence and benefit studies and even therapeutic strategies 
in senescence and age-related diseases.
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7 Extended Data

Extended Data Fig.1

Information of training and validation data.

Extended Data Fig.2

hUSI enables to distinguish senescent samples in complete and zeroing-out microarray 
profiles.

Extended Data Fig.3

Comparison of three types of senescence qualification methods in four scRNA-seq datasets. 

Extended Data Fig.4

hUSI enables to uncover senescent cells accumulated in COVID-19 lung tissues.

Extended Data Fig.5

hUSI enables to distinguish senescent tumor cells in melanoma. 

Extended Data Fig.6

Signal pathways are specific for senescent tumor cells.

8 Supplementary information

Supplementary Table 1

Details of datasets used for training model, validation and evaluation.

Supplementary Table 2

Details of learned-senescence features.

Supplementary Table 3

AUC results of methods included in comparison.

Supplementary Table 4

Eight gene sets included in comparison.

https://github.com/WJPina/HUSI


Supplementary Table 5

DEGs in melanoma microarray data and specific highly expressed genes of three tumor 

subpopulations in melanoma scRNA-seq data. 

9 Main figures



Fig.1|Training and validation of hUSI. a. Development workflow of hUSI. First, RNA-seq 

data sets derived from five cell types and six senescence inducing factors were included in 

the training datasets. Second, senescence profiles were re-processed by a unified RNA-seq 

data processing pipeline. Third, OCLR was chosen to learn the senescence features, 

generating a weighted gene set. Finally, Spearman correlation coefficient between weights 

and expression values of genes is defined as hUSI. b. Senescent samples in training set 

have significant higher expression level of CDKN1A and CDKN2B than corresponding non-

senescent samples (**** means p<1e-4 and *** means p<1e-3, t-test with Bonferroni 

correction). c. Senescence features learned by OCLR were significantly positively enriched 

in senescence associated gene sets (left panel) and negatively enriched in proliferation gene 

sets (right panel). Each line represents a different hallmark gene set with a variety of color 

shade of line depending on normalized enrichment sore (NSE). d. Senescent samples 

showed significant higher hUSIs than non-senescent (normal or proliferative) samples across 

seven studies, which demonstrated hUSI is robust against batch effects (*** means p<1e-

3, one-tail t-test). Dotted lines represent paired senescent and control samples. e. hUSIs of 

senescent samples caused by CIS, OIS and RS in MDAH04 or WI-38 cell lines are all 

significantly higher than corresponding control samples (* means p<0.05, ** means p<0.01 

and *** means p<1e-3, one-tail t-test). 



Fig.2|hUSI gives reliable senescence evaluation for samples from GTEx and TCGA. 
a. hUSIs progressively elevate with increased donor age for GTEx samples (* means p<0.05, 
** means p<0.01 and *** means p<1e-3, one-tail t-test). b. hUSIs are significantly positively 
correlated with CS scores in both GTEx (left panel) and TCGA (right panel) samples. 
Spearman correlation coefficients (denoted as R values) were used for the evaluation. c. 
hUSIs and CS scores present high Spearman coefficients in most tissues (GTEx, upper panel) 
and cancer types (TCGA, lower panel).



Fig.3|hUSI enable to distinguish senescent cells in various conditions. a. hUSIs are 

significantly higher in senescent cells than growing cells across four single-cell datasets 

(**** means p<1e-4, t-test). b. AUC rank shows hUSI outperformed 12 senescence or 

proliferation marker genes, five methods and eight senescence-associated gene sets in 



evaluating senescence status. Marker gene expression value, computed senescence score 

and ssGSEA score are respectively used to calculate AUC on four scRNA-seq datasets. Error 

bars were based on the AUC ranks across four single-cell datasets. c. hUSI distribution of 

nine annotated cell types in the snRNA-seq dataset collected from COVID-19-infected lung 

tissues. d. Epithelial cells, endothelial cells, fibroblasts, myeloid, and neuronal cells from 

COVID-19 patients exhibited significantly higher hUSIs compared to normal donors (**** 

denote p<1e-4, Mann-Whitney tests followed by Bonferroni corrections). e. Cells can be 

divided into four classes with significantly different senescence degree (C1~C4) (**** 

denote p<1e-4, Mann-Whitney tests followed by Bonferroni corrections) and the most 

senescent cells (C4) have apparent higher expression levels of core senescence- and SASP-

related genes and lower expression level of proliferation-related genes. f. Lung tissue from 

COVID-19 patients has a higher fraction of C4 than normal sample. g. Higher fraction of 

senescent cells (C4) (y-axis) existed in COVID-19 patients with less days from symptom 

onset to death (x-axis). The spearman correlation coefficient (denoted as R) between days 

to death and C4 fraction is -0.26. h. Top 15 cell types which display higher fraction of 

senescent cells (C4) in COVID-19 lungs comparing to normal lungs. Top five cell types were 

highlighted whose fraction difference is larger than 0.2. i. Using GSEA, DEGs of senescent 

AT1 cells (C4 vs C2) were enriched on GO terms (Biological process) and KEEG terms. Top 

ten terms were plotted (sorted by NES), all terms have false discovery rate (FDR) less than 

0.005. 



Fig.4|Identifying senescent tumor cells to benefit patient survival. a. Validating the 
senescence degrees of cycling, transitional and senescent subpopulations by overlap 
comparison with DEGs (up or down regulated) in bulk samples (senescence vs growing). 
Hypergeometric distribution test was used to calculate the p values. b. Diffusion map 
showing a trajectory from cycling cells to senescent cells in melanoma. c. Two classical 
aging-related marker genes (CDKN1A and SERPINE) showed increased expression level 
along trajectory and in senescent subpopulation. d. Different GO terms (biological process) 



characterize cycling, transitional and senescent subpopulations, with replication-associated 
terms enriched in cycling subpopulation while immunity activation-related terms enriched 
in senescent subpopulation. e. Heatmap of Spearman correlation coefficient between the 
three subpopulations and the abundance of 22 immune cell types indicates that senescent 
tumor cells were associated with immunity activation. f. Survival curves of melanoma 
patients with different proportion of cycling and senescent cell subpopulations.





Fig.5|TNF-β and BMP signal pathways are specific for senescent tumor cells. a. 
Three subpopulations of tumor cells and other six cell types presented in tumor 
microenvironment (T cell, B cell, natural killer (NK) cell, macrophage (Macro) cell, endothelial 
(Endo) cell and CAFs) are taken to infer cell-cell communications in tumor microenvironment. 
b. The Senescent subpopulation exhibits higher interaction strength than other two 
subpopulations (cycling and transitional). X-axis and y-axis represent log10-transformed 
outgoing and incoming interaction strength, respectively. c. Ten ligand-receptor pairs 
showing specifically high communication probability in senescent subpopulation, with two 
pairs belonging to TNF-β signaling pathway and four pairs belonging to BMP signal pathway. 
d. Senescent subpopulation receives TGF-β and BMP signals mainly from CAFs and T cell in 
cell-cell communication networks. e. Senescent subpopulation shows higher expression 
level of gene encoding receptors involved in TGF-β (TGFBR1 and TGFBR1) and BMP (BMPR1B 
and BMPR2) signaling pathways. f. Melanoma patients with high expression level of BMPR2, 
TGFBR1 or TGFBR1 have a significant better survival prognosis. 
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