Albahri G, Alyamani AA, Badran A, Hijazi A, Nasser M, Maresca M, Baydoun E (2023) Enhancing essential grains yield for sustainable food security and bio-safe agriculture through latest innovative approaches. Agronomy 13:1709. https://doi.org/10.3390/agronomy13071709
Ali S, Hameed A, Muhae-Ud-Din G, Ikhlaq M, Ashfaq M, Atiq M, Ali F, Zia ZU, Naqvi SA, Wang Y (2023) Citrus Canker: A Persistent Threat to the Worldwide Citrus Industry—An Analysis. Agronomy 13:1112. https://doi.org/10.3390/agronomy13041112
Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389-3402. https://doi.org/10.1093/nar/25.17.3389
An SQ, Potnis N, Dow M, Vorhölter FJ, He YQ, Becker A, Teper D, Li Y, Wang N, Bleris L, Tang JL (2020) Mechanistic insights into host adaptation, virulence and epidemiology of the phytopathogen Xanthomonas. FEMS Microbiol Rev 44:1-32. https://doi.org/10.1093/femsre/fuz024
Ashraf B, Atiq N, Khan K, Wadood A, Uddin R (2022) Subtractive genomics profiling for potential drug targets identification against Moraxella catarrhalis. PloS One 17:e0273252. https://doi.org/10.1371/journal.pone.0273252
Aydınkal RM, Serçinoğlu O, Ozbek P (2019) ProSNEx: a web-based application for exploration and analysis of protein structures using network formalism. Nucleic Acids Res 47:W471-W476. https://doi.org/10.1093/nar/gkz390
Baker FN, Porollo A (2016) CoeViz: a web-based tool for coevolution analysis of protein residues. BMC Bioinform 17:1-7. https://doi.org/10.1186/s12859-016-0975-z
Barh D, Tiwari S, Jain N, Ali A, Santos AR, Misra AN, Azevedo V, Kumar A (2011) In silico subtractive genomics for target identification in human bacterial pathogens. Drug Dev Res 72:162-177. https://doi.org/10.1002/ddr.20413
Behlau F, Canteros BI, Minsavage GV, Jones JB, Graham JH (2011) Molecular characterization of copper resistance genes from Xanthomonas citri subsp. citri and Xanthomonas alfalfae subsp. citrumelonis. Appl. Environ. Microbiol 77:4089-4096. https://doi.org/10.1128%2FAEM.03043-10
Butt AM, Tahir S, Nasrullah I, Idrees M, Lu J, Tong Y (2012) Mycoplasma genitalium: a comparative genomics study of metabolic pathways for the identification of drug and vaccine targets. Infect Genet Evol 12:53-62. https://doi.org/10.1016/j.meegid.2011.10.017
Conforte VP, Malamud F, Yaryura PM, Toum Terrones L, Torres PS, De Pino V, Chazarreta CN, Gudesblat GE, Castagnaro AP, R. Marano M, Vojnov AA (2019) The histone‐like protein HupB influences biofilm formation and virulence in Xanthomonas citri ssp. citri through the regulation of flagellar biosynthesis. Mol Plant Pathol 20:589-598. https://doi.org/10.1111/mpp.12777
Eismann L, Fijalkowski I, Galmozzi CV, Koubek J, Tippmann F, Van Damme P, Kramer G (2022) Selective ribosome profiling reveals a role for SecB in the co-translational inner membrane protein biogenesis. Cell Rep 41:111776. https://doi.org/10.1016/j.celrep.2022.111776
Ference CM, Gochez AM, Behlau F, Wang N, Graham JH, Jones JB (2018) Recent advances in the understanding of Xanthomonas citri ssp. citri pathogenesis and citrus canker disease management. Mol Plant Pathol 19:1302. https://doi.org/10.1111%2Fmpp.12638
Francke C, Groot Kormelink T, Hagemeijer Y, Overmars L, Sluijter V, Moezelaar R, Siezen RJ (2011) Comparative analyses imply that the enigmatic Sigma factor 54 is a central controller of the bacterial exterior. BMC Genom 12:1-21. https://doi.org/10.1186/1471-2164-12-385
Gicharu GK, SUN DL, Xun HU, FAN XJ, Tao ZH, WU CW, ZOU HS (2016) The sigma 54 genes rpoN1 and rpoN2 of Xanthomonas citri subsp. citri play different roles in virulence, nutrient utilization and cell motility. J Integr Agric 15:2032-2039. https://doi.org/10.1016/S2095-3119(15)61317-X
Huang Y, Niu B, Gao Y, Fu L, Li W (2010) CD-HIT Suite: a web server for clustering and comparing biological sequences. Bioinform 26:680-682. https://doi.org/10.1093/bioinformatics/btq003
Ibrahim KA, Helmy OM, Kashef MT, Elkhamissy TR, Ramadan MA (2020) Identification of potential drug targets in helicobacter pylori using in silico subtractive proteomics approaches and their possible inhibition through drug repurposing. Pathogens 9:747. http://dx.doi.org/10.3390/pathogens9090747
Izadiyan M, Taghavi SM (2023) Diversity of copper resistant Xanthomonas citri subsp. citri strains, the causal agent of Asiatic citrus canker, in Iran. Eur J Plant Pathol 1-14. https://doi.org/10.1007/s10658-023-02786-w
Kanehisa M, Goto S, Kawashima S, Nakaya A (2002) The KEGG databases at GenomeNet. Nucleic Acids Res 30:42-46. https://doi.org/10.1093/nar/30.1.42
Kaur H, Kalia M, Singh V, Modgil V, Mohan B, Taneja N (2021a) In silico identification and characterization of promising drug targets in highly virulent uropathogenic Escherichia coli strain CFT073 by protein-protein interaction network analysis. Inform Med Unlocked 25:100704. https://doi.org/10.1016/j.imu.2021.100704
Kaur H, Kalia M, Taneja N (2021) Identification of novel non-homologous drug targets against Acinetobacter baumannii using subtractive genomics and comparative metabolic pathway analysis. Microb Pathog 152:104608. https://doi.org/10.1016/j.micpath.2020.104608
Keshri V, Singh DP, Prabha R, Rai A, Sharma AK (2014) Genome subtraction for the identification of potential antimicrobial targets in Xanthomonas oryzae pv. oryzae PXO99A pathogenic to rice. 3 Biotech 4:91-95. https://doi.org/10.1007/s13205-013-0131-7
Khan K, Jalal K, Khan A, Al-Harrasi A, Uddin R (2022) Comparative Metabolic Pathways Analysis and Subtractive Genomics Profiling to Prioritize Potential Drug Targets Against Streptococcus pneumoniae. Front Microbiol 12:796363. https://doi.org/10.3389/fmicb.2021.796363
Khan MK, Dangles O (2014) A comprehensive review on flavanones, the major citrus polyphenols. J Food Compos Anal 33:85-104. https://doi.org/10.1016/j.jfca.2013.11.004
Kong X, Zhu B, Stone VN, Ge X, El-Rami FE, Donghai H, Xu P (2019) ePath: an online database towards comprehensive essential gene annotation for prokaryotes. Sci Rep 9:12949. https://doi.org/10.1038/s41598-019-49098-w
Košćak L, Lamovšek J, Đermić E, Prgomet I, Godena S (2023) Microbial and plant-based compounds as alternatives for the control of phytopathogenic bacteria. Horticulturae 9:1124. https://doi.org/10.3390/horticulturae9101124
Kumar D, Jarial K, Jarial RS, Banyal SK, Jandaik S (2020) Prevalence of citrus canker caused by Xanthomonas axonopodis pv. citri in subtropical zone of himachal Pradesh. Int j bio-resour stress manag 11:89-94. https://doi.org/10.23910/IJBSM/2020.11.1.2061
Lin X, Li X, Lin X (2020) A review on applications of computational methods in drug screening and design. Molecules 25:1375. https://doi.org/10.3390/molecules25061375
Luiz MH, Takahashi LT, Bassanezi RC (2021) Optimal control in citrus diseases. Comput. Appl. Math 40:191. https://doi.org/10.1007/s40314-021-01581-9
Luo H, Lin Y, Gao F, Zhang CT, Zhang R (2014) DEG 10, an update of the database of essential genes that includes both protein-coding genes and noncoding genomic elements. Nucleic Acids Res 42:D574-D580. https://doi.org/10.1093/nar/gkt1131
Mandal J, Sinha S (2021) In Silico Identification of Protein in Ralstonia solanacearum, A Bacterial Wilt Pathogen for Drug Target by Subtractive Genomic Analysis. Biosc Biotech Res Comm 14:291-297. http://dx.doi.org/10.21786/bbrc/14.1/41
Martins PM, de Oliveira Andrade M, Benedetti CE, de Souza AA (2020) Xanthomonas citri subsp. citri: host interaction and control strategies. Trop Plant Pathol 45:213-236. https://doi.org/10.1007/s40858-020-00376-3
Naqvi SA, Wang J, Malik MT, Umar UU, Hasnain A, Sohail MA, Shakeel MT, Nauman M, Hassan MZ, Fatima M, Datta R (2022) Citrus canker—distribution, taxonomy, epidemiology, disease cycle, pathogen biology, detection, and management: A critical review and future research agenda. Agronomy 12:1075. https://doi.org/10.3390/agronomy12051075
Rabbee MF, Ali MS, Baek KH (2019) Endophyte Bacillus velezensis isolated from Citrus spp. Controls streptomycin-resistant Xanthomonas citri subsp. citri that causes citrus bacterial canker. Agronomy 9:470. http://dx.doi.org/10.3390/agronomy9080470
Rahman MA, Noore MS, Hasan MA, Ullah MR, Rahman MH, Hossain MA, Ali Y, Islam MS (2014) Identification of potential drug targets by subtractive genome analysis of Bacillus anthracis A0248: An in silico approach. Comput Biol Chem 52:66-72. http://dx.doi.org/10.1016/j.compbiolchem.2014.09.005
Rathod NB, Elabed N, Punia S, Ozogul F, Kim SK, Rocha JM (2023) Recent developments in polyphenol applications on human health: a review with current knowledge. Plants 12:1217. https://doi.org/10.3390/plants12061217
UniProt Consortium (2019) UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res 47:D506-D515. http://dx.doi.org/10.1093/nar/gky1049
Sanyal D, Banerjee S, Bej A, Chowdhury VR, Uversky VN, Chowdhury S, Chattopadhyay K (2022) An integrated understanding of the evolutionary and structural features of the SARS-CoV-2 spike receptor binding domain (RBD) Int J Biol Macromol 217:492-505. https://doi.org/10.1016/j.ijbiomac.2022.07.022
Searchinger T, Waite R, Hanson C, Ranganathan J, Dumas P, Matthews E, Klirs C (2019) Creating a sustainable food future: A menu of solutions to feed nearly 10 billion people by 2050. Final report In WRI.
Senthamizhan V, Ravindran B, Raman K (2021) NetGenes: A database of essential genes predicted using features from interaction networks. Front genet 12:722198. https://doi.org/10.3389/fgene.2021.722198
Singh R, Ramniwas, Kumar M (2019) Development of citrus canker in citrus in relation to weather parameters. J Agrometeorol 21:134-139.
Solanki V, Tiwari M, Tiwari V (2019) Prioritization of potential vaccine targets using comparative proteomics and designing of the chimeric multi-epitope vaccine against Pseudomonas aeruginosa. Sci Rep 9:5240. https://doi.org/10.1038/s41598-019-41496-4
Stephenson K, Hoch JA (2002) Two-component and phosphorelay signal-transduction systems as therapeutic targets. Curr Opin Pharmacol 2:507-512. https://doi.org/10.1016/S1471-4892(02)00194-7
Sudha R, Katiyar A, Katiyar P, Singh H, Prasad P (2019) Identification of potential drug targets and vaccine candidates in Clostridium botulinum using subtractive genomics approach. Bioinform 15:18. https://doi.org/10.6026%2F97320630015018
Sundin GW, Wang N (2018) Antibiotic resistance in plant-pathogenic bacteria. Annu Rev Phytopathol 56:161-180. https://doi.org/10.1146/annurev-phyto-080417-045946
Syed-Ab-Rahman SF, Hesamian MH, Prasad M (2022) Citrus disease detection and classification using end-to-end anchor-based deep learning model. Appl Intell 52:927-938. https://doi.org/10.1007/s10489-021-02452-w
Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP, Kuhn M (2015) STRING v10: protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43:D447-D452. https://doi.org/10.1093/nar/gku1003
Talibi I, Boubaker H, Boudyach E, Ait Ben Aoumar A (2014) Alternative methods for the control of postharvest citrus diseases. J Appl Microbiol 117:1-17. https://doi.org/10.1111/jam.12495
The UniProt Consortium (2021) UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res 49: D480–D489. https://doi.org/10.1093/nar/gkaa1100
Tian W, Chen C, Lei X, Zhao J, Liang J (2018) CASTp 3.0: computed atlas of surface topography of proteins. Nucleic Acids Res 46:W363-W367. https://doi.org/10.1093/nar/gky473
Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, Sajed T, Johnson D, Li C, Sayeeda Z, Assempour N (2018) DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res 46:D1074-D1082. https://doi.org/10.1093/nar/gkx1037
Yan Q, Wang N (2011) The ColR/ColS two-component system plays multiple roles in the pathogenicity of the citrus canker pathogen Xanthomonas citri subsp. citri. J Bacteriol 193:1590-1599. https://doi.org/10.1128%2FJB.01415-10
Yasuhara-Bell J, Santillana G, Robène I, Pruvost O, Nakhla M, Mavrodieva V (2023) Genome-informed multiplex conventional PCR for identification and differentiation of Xanthomonas citri pv. citri subpathotypes, the causal agents of Asiatic citrus canker. PhytoFront 3:235-245. https://doi.org/10.1094/PHYTOFR-04-22-0044-FI
Yu CS, Chen YC, Lu CH, Hwang JK (2006) Prediction of protein subcellular localization. Proteins: Struct Funct Genet 64:643-651. https://doi.org/10.1002/prot.21018
Yu NY, Wagner JR, Laird MR, Melli G, Rey S, Lo R, Dao P, Sahinalp SC, Ester M, Foster LJ, Brinkman FS (2010) PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinform 26:1608-1615. https://doi.org/10.1093/bioinformatics/btq249