1. World Health Organization. Leishmaniasis [Internet]. [cited 2022 Mar 29]. Available from: https://www.who.int/health-topics/leishmaniasis#tab=tab_1
2. Instituto Nacional de Salud C. Protocolo de vigilancia de Leishmaniasis. [cited 2023 Dec 12]; Available from: https://www.ins.gov.co/buscador-eventos/Lineamientos/Pro_Leishmaniasis.pdf
3. Instituto Nacional de Salud. Sistema de Vigilancia SIVIGILA [Internet]. [cited 2022 Jun 16]. Available from: https://www.ins.gov.co/Direcciones/Vigilancia/Paginas/SIVIGILA.aspx
4. Okwor I, Uzonna J. Social and Economic Burden of Human Leishmaniasis. Am J Trop Med Hyg [Internet]. 2016 Mar 1 [cited 2024 Jan 16];94(3):489–93. Available from: https://pubmed.ncbi.nlm.nih.gov/26787156/
5. Belkaid Y, Kamhawi S, Modi G, Valenzuela J, Noben-Trauth N, Rowton E, et al. Development of a Natural Model of Cutaneous Leishmaniasis: Powerful Effects of Vector Saliva and Saliva Preexposure on the Long-Term Outcome of Leishmania major Infection in the Mouse Ear Dermis. J Exp Med [Internet]. 1998 Nov 11 [cited 2022 Aug 27];188(10):1941. Available from: /pmc/articles/PMC2212417/
6. Bacon KM, Hotez PJ, Kruchten SD, Kamhawi S, Bottazzi ME, Valenzuela JG, et al. The potential economic value of a cutaneous leishmaniasis vaccine in seven endemic countries in the Americas. Vaccine [Internet]. 2012 Nov 20 [cited 2023 Dec 12];31(3):480–6. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/23176979/?tool=EBI
7. Dinc R. Leishmania Vaccines: the Current Situation with Its Promising Aspect for the Future. Korean J Parasitol [Internet]. 2022 Dec 1 [cited 2024 Jan 16];60(6):379–91. Available from: https://pubmed.ncbi.nlm.nih.gov/36588414/
8. Sacks D, Noben-Trauth N. The immunology of susceptibility and resistance to Leishmania major in mice. Nat Rev Immunol [Internet]. 2002 Nov [cited 2024 Jan 16];2(11):845–58. Available from: https://pubmed.ncbi.nlm.nih.gov/12415308/
9. Tripathi P, Singh V, Naik S. Immune response to leishmania: paradox rather than paradigm. FEMS Immunol Med Microbiol [Internet]. 2007 Nov 1 [cited 2022 Aug 25];51(2):229–42. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/j.1574-695X.2007.00311.x
10. Gollob KJ, Viana AG, Dutra WO. Immunoregulation in human American leishmaniasis: balancing pathology and protection. Parasite Immunol [Internet]. 2014 Aug 1 [cited 2022 Aug 25];36(8):367–76. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/pim.12100
11. Desai D V., Kulkarni-Kale U. T-cell epitope prediction methods: An overview. Methods in Molecular Biology [Internet]. 2014 [cited 2022 Aug 27];1184:333–64. Available from: https://link.springer.com/protocol/10.1007/978-1-4939-1115-8_19
12. Sidney J, Peters B, Sette A. Epitope prediction and identification- adaptive T cell responses in humans. Semin Immunol. 2020 Aug 1;50:101418.
13. Patronov A, Doytchinova I. T-cell epitope vaccine design by immunoinformatics. Open Biol [Internet]. 2013 [cited 2024 Jan 16];3(1). Available from: /pmc/articles/PMC3603454/
14. Trachtenberg EA, Keyeux G, Bernal JE, Rhodas MC, Erlich HA. Results of Expedition Humana. Tissue Antigens [Internet]. 1996 Sep 1 [cited 2024 Jan 16];48(3):174–81. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/j.1399-0039.1996.tb02625.x
15. Correa PA, Whitworth WC, Kuffner T, McNicholl J, Anaya JM. HLA-DR and DQB1 gene polymorphism in the North-western Colombian population. Tissue Antigens [Internet]. 2002 May 1 [cited 2024 Jan 16];59(5):436–9. Available from: https://onlinelibrary.wiley.com/doi/full/10.1034/j.1399-0039.2002.590515.x
16. Ossa Reyes H, Manrique A, Quintanilla S, Peña A. Polimorfismos del sistema HLA (loci A*, B* y DRB1*) en población colombiana. Nova. 2007 Jun 15;5(7):25–30.
17. Rocío Arias-Murillo Y, Ángel Castro-Jiménez M, Ríos-Espinosa F, López-Rivera JJ, Johanna Echeverry-Coral S, Esp B, et al. Analysis of HLA-A, HLA-B, HLA-DRB1 allelic, genotypic, and haplotypic frequencies in colombian population. Colomb Med [Internet]. 2010 [cited 2024 Jan 16];41(4):336–43. Available from: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S1657-95342010000400006&lng=en&nrm=iso&tlng=en
18. Ávila-Portillo LM, Carmona A, Franco L, Briceño I, Casas MC, Gómez A. Bajo polimorfismo en el sistema de antígenos de leucocitos humanos en población mestiza colombiana. Universitas Medica [Internet]. 2010 Aug 2 [cited 2024 Jan 16];51(4):359–70. Available from: https://revistas.javeriana.edu.co/index.php/vnimedica/article/view/16020
19. Reynisson B, Barra C, Kaabinejadian S, Hildebrand WH, Peters B, Peters B, et al. Improved Prediction of MHC II Antigen Presentation through Integration and Motif Deconvolution of Mass Spectrometry MHC Eluted Ligand Data. J Proteome Res. 2020 Jun 5;19(6):2304–15.
20. Racle J, Michaux J, Rockinger GA, Arnaud M, Bobisse S, Chong C, et al. Robust prediction of HLA class II epitopes by deep motif deconvolution of immunopeptidomes. Nat Biotechnol [Internet]. 2019 Nov 1 [cited 2023 Dec 6];37(11):1283–6. Available from: https://pubmed.ncbi.nlm.nih.gov/31611696/
21. Racle J, Guillaume P, Schmidt J, Michaux J, Larabi A, Lau K, et al. Machine learning predictions of MHC-II specificities reveal alternative binding mode of class II epitopes. Immunity [Internet]. 2023 Jun 13 [cited 2023 Dec 6];56(6):1359-1375.e13. Available from: http://www.cell.com/article/S1074761323001292/fulltext
22. Chen B, Khodadoust MS, Olsson N, Wagar LE, Fast E, Liu CL, et al. Predicting HLA class II antigen presentation through integrated deep learning. Nat Biotechnol [Internet]. 2019 Nov 1 [cited 2024 Jan 15];37(11):1332–43. Available from: https://pubmed.ncbi.nlm.nih.gov/31611695/
23. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res [Internet]. 2004 Mar 1 [cited 2024 Jan 25];32(5):1792–7. Available from: https://dx.doi.org/10.1093/nar/gkh340
24. Edgar RC. MUSCLE: A multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics [Internet]. 2004 Aug 19 [cited 2024 Jan 25];5(1):1–19. Available from: https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-5-113
25. Xu X, Zou X. MDockPeP: A Web Server for Blind Prediction of Protein-Peptide Complex Structures. Methods Mol Biol [Internet]. 2020 [cited 2024 Jan 21];2165:259–72. Available from: https://pubmed.ncbi.nlm.nih.gov/32621230/
26. Zhou P, Jin B, Li H, Huang SY. HPEPDOCK: a web server for blind peptide-protein docking based on a hierarchical algorithm. Nucleic Acids Res [Internet]. 2018 Jul 2 [cited 2024 Jan 21];46(W1):W443–50. Available from: https://pubmed.ncbi.nlm.nih.gov/29746661/
27. Xu X, Yan C, Zou X. MDockPeP: An ab-initio protein–peptide docking server. J Comput Chem [Internet]. 2018 Oct 30 [cited 2024 Jan 24];39(28):2409–13. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/jcc.25555
28. Pyrkov T V., Ozerov I V., Balitskaya ED, Efremov RG. Molecular docking: The role of noncovalent interactionsin the formation of protein-nucleotide and protein-peptide complexes. Russ J Bioorg Chem [Internet]. 2010 Jul 20 [cited 2024 Jan 24];36(4):446–55. Available from: https://link.springer.com/article/10.1134/S1068162010040023
29. Ling R, Dai Y, Huang B, Huang W, Yu J, Lu X, et al. In silico design of antiviral peptides targeting the spike protein of SARS-CoV-2. Peptides (NY) [Internet]. 2020 Aug 1 [cited 2024 Jan 24];130:170328. Available from: /pmc/articles/PMC7198429/
30. Pantsar T, Poso A. Binding Affinity via Docking: Fact and Fiction. Molecules 2018, Vol 23, Page 1899 [Internet]. 2018 Jul 30 [cited 2024 Jan 24];23(8):1899. Available from: https://www.mdpi.com/1420-3049/23/8/1899/htm
31. Rapin N, Lund O, Bernaschi M, Castiglione F. Computational Immunology Meets Bioinformatics: The Use of Prediction Tools for Molecular Binding in the Simulation of the Immune System. PLoS One [Internet]. 2010 [cited 2024 Apr 2];5(4):9862. Available from: /pmc/articles/PMC2855701/
32. Stolfi P, Castiglione F, Mastrostefano E, Di Biase I, Di Biase S, Palmieri G, et al. In-silico evaluation of adenoviral COVID-19 vaccination protocols: Assessment of immunological memory up to 6 months after the third dose. Front Immunol [Internet]. 2022 Oct 24 [cited 2024 Apr 2];13. Available from: /pmc/articles/PMC9639861/
33. Ragone C, Manolio C, Cavalluzzo B, Mauriello A, Tornesello ML, Buonaguro FM, et al. Identification and validation of viral antigens sharing sequence and structural homology with tumor-associated antigens (TAAs). J Immunother Cancer [Internet]. 2021 May 28 [cited 2024 Apr 2];9(5). Available from: https://pubmed.ncbi.nlm.nih.gov/34049932/
34. Dinc R. Leishmania Vaccines: the Current Situation with Its Promising Aspect for the Future. Korean J Parasitol [Internet]. 2022 Dec 1 [cited 2024 Jan 26];60(6):379. Available from: /pmc/articles/PMC9806502/
35. Soleymani S, Tavassoli A, Housaindokht MR. An overview of progress from empirical to rational design in modern vaccine development, with an emphasis on computational tools and immunoinformatics approaches. Comput Biol Med [Internet]. 2022 Jan 1 [cited 2024 Jan 26];140. Available from: https://pubmed.ncbi.nlm.nih.gov/34839187/
36. Seyed N, Zahedifard F, Safaiyan S, Gholami E, Doustdari F, Azadmanesh K, et al. In Silico Analysis of Six Known Leishmania major Antigens and In Vitro Evaluation of Specific Epitopes Eliciting HLA-A2 Restricted CD8 T Cell Response. PLoS Negl Trop Dis [Internet]. 2011 Sep [cited 2024 Jan 26];5(9):e1295. Available from: https://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0001295
37. Motamedpour L, Dalimi A, Pirestani M, Ghaffarifar F. In silico analysis and expression of a new chimeric antigen as a vaccine candidate against cutaneous leishmaniasis. Iran J Basic Med Sci [Internet]. 2020 Nov 1 [cited 2024 Jan 26];23(11):1409–18. Available from: https://ijbms.mums.ac.ir/article_16432.html
38. Ahmadpour NB, Dalimi A, Pirestani M, Sadraei J. A novel chimeric antigen as a vaccine candidate against leishmania major: In silico analysis. Iran J Parasitol. 2021 Apr 1;16(2):186–98.
39. Rabienia M, Roudbari Z, Ghanbariasad A, Abdollahi A, Mohammadi E, Mortazavidehkordi N, et al. Exploring membrane proteins of Leishmania major to design a new multi-epitope vaccine using immunoinformatics approach. European Journal of Pharmaceutical Sciences. 2020 Sep 1;152:105423.
40. Saha S, Vashishtha S, Kundu B, Ghosh M. In-silico design of an immunoinformatics based multi-epitope vaccine against Leishmania donovani. BMC Bioinformatics. 2022 Dec 1;23(1).
41. Bhattacharjee M, Banerjee M, Mukherjee A. In silico designing of a novel polyvalent multi-subunit peptide vaccine leveraging cross-immunity against human visceral and cutaneous leishmaniasis: an immunoinformatics-based approach. J Mol Model [Internet]. 2023 Apr 1 [cited 2024 Jan 26];29(4). Available from: https://pubmed.ncbi.nlm.nih.gov/36928431/
42. Günther S, Schlundt A, Sticht J, Roske Y, Heinemann U, Wiesmüller KH, et al. Bidirectional binding of invariant chain peptides to an MHC class II molecule. Proc Natl Acad Sci U S A [Internet]. 2010 Dec 21 [cited 2024 Sep 3];107(51):22219–24. Available from: https://www.pnas.org/doi/abs/10.1073/pnas.1014708107
43. Racle J, Guillaume P, Schmidt J, Michaux J, Larabi A, Lau K, et al. Machine learning predictions of MHC-II specificities reveal alternative binding mode of class II epitopes. Immunity [Internet]. 2023 Jun 13 [cited 2024 Sep 3];56(6):1359-1375.e13. Available from: http://www.cell.com/article/S1074761323001292/fulltext