According to the data released by the Hainan Health Commission [11], by Mar 24, 2020, 162 of 168 patients had been discharged and 6 patients had died, with a mortality rate of 3.6%. No new cases occurred after Feb 19, 2020 [14]. The 91 cases in this study accounted for 54.2% of all the confirmed cases in Hainan, and a similar trend was found in the epidemic course (see Figure 1). Of the 91 patients, three patients died. The mortality rate was similar to that of the whole Hainan Province.
Our study shows that during the 29-day epidemic period, most of the patients were diagnosed within the first three weeks after the first identified imported case. In the early period, imported cases were predominant in the epidemic. In the later period, local cases were more common, and 77.1% of the patients showed clustering, mainly in families. Cluster outbreaks were also found in Guangzhou patients in Lin’s study [17]. These findings suggest increasing transmissibility of the virus during the spread [18] and, hence, a great challenge in overall prevention and control. However, the local cases did not lead to continuous community transmission, as reflected by the short epidemic period (29 days). This may be attributed to the strict isolation and prevention measures implemented throughout the country and the effective implementation of prevention and control policies by Hainan (Figure 1). The measures included establishing fever clinics for screening suspicious patients, designating hospitals to focus on treating patients with COVID-19 [19], and raising the level of emergency response to COVID-19 prevention and control to the first level promptly at Day 4. At the same time, other measures also worked well in blocking the routes of transmission and reducing the chance of infection. Examples include encouraging the public to wear face masks, wash hands more frequently, and stay at home unless necessary and activating joint prevention and control mechanisms and cross-sector control for traffic control at the community level. Moreover, delaying the resumption of work and school and implementing work-from-home policies for employees and online teaching for students were adopted to reduce the probability of clusters [20]. The reported estimated incubation time of SARS‐CoV‐2 was based on limited data. Zhong reported that the median incubation period was 4 days in 291 cases in China [21]. Jiang Xu et al. found that there is no observable difference between the incubation time for SARS-CoV-2, severe acute respiratory syndrome coronavirus (SARS-CoV), and middle east respiratory syndrome coronavirus (MERS-CoV), with a mean of 4.9 days for SARS-CoV-2, 4.7 days for SARS, and 5.8 days for MERS [22]. To avoid the risk of virus spreading, all potentially exposed subjects were required to be isolated for 14 days, which is the longest predicted incubation time. Our epidemiological investigation of 53 patients from Wuhan found that the median time of symptom onset was 5 days, with a range of 1 day to 34 days. The patient with the longest incubation period, who was a male in their 70s, flew from Wuhan to Hainan on January 2, 2020 and had no contact with confirmed or suspected COVID-19 patients. He occasionally went to the farmers' market near his residence to buy vegetables, but there were no confirmed COVID-19 patients associated with the market. He developed symptoms on February 5 and was diagnosed on February 7, 2020 [11]. This particular case indicates that the longest incubation time may be more than 34 days.
This study showed that the main symptoms of patients in Hainan Province were fever and cough, and 30% of patients had shortness of breath. Compared with early COVID-19 cases in Wuhan, diarrhea (14.3%) was relatively more common in Hainan patients [23]. The main complications included infections and ARDS. Six severe cases developed to MODS. In general, the proportions of severe patients and mortalities were lower than those of Wuhan and similar to the national data [24,25].
In the imported cases, the proportion of patients with fever, the peak temperature, the level of blood CRP, the proportion of severe cases, and the incidence of complications, especially infections, were higher than those in the local cases. Meanwhile, the lymphocyte and platelets counts were significantly lower in imported cases than in local cases. Data showed that the imported cases were older, and coexisting illness was more common than in local cases, which might demonstrate why the imported cases were more severe. Another possible explanation is that the time of infection SARA-CoV-2 in imported cases was earlier, with a more virulent virus subtype. However, this requires further study of the genomics and pathogenicity of SARA-CoV-2 at different stages of transmission. Tang's research indicates that SARS-CoV-2 had formed two subtypes, S and L, during the transmission process, and changes in viral genes will cause changes in pathogenicity and transmission [18]. A similar study had been conducted for the MERS virus, which had shown that the virus becomes weaker during transmission [26]. It remains to be further studied whether there was virus mutation in the process of virus transmission from imported cases to local cases, which may have led to the weakening of its pathogenicity. Furthermore, given the experience in Wuhan, the Hainan government was well-prepared for the epidemic, and comprehensive screening allowed early case identification and prompt treatment.
All 91 patients, including four asymptomatic patients, had CT changes in the lungs, which mainly manifested as ground-glass opacity in the lung periphery in the early stage. However, as the disease progressed, some patients had pulmonary consolidation and pleural effusion. Therefore, pulmonary CT examination is a sensitive indicator for the screening of COVID-19 and is recommended for all suspected patients [27].
Even so, SARS-CoV-2 RNA provides direct evidence for confirming COVID-19. Among all our patients, SARS-COV-2 RNA was detected in nasopharyngeal swabs, but RNA was not detected in 12 patients’ feces. Due to the positive detecting of SARS-CoV-2 RNA in feces, the problem of gastrointestinal transmission and even aerosol transmission has attracted broad attention. Since then, multiple research teams have isolated viruses in the feces, further illustrating the risk of gastrointestinal transmission.
However, for a new viral infectious disease, there is no exact data on how long virus will be shed through the respiratory and digestive tracts. Our study found that the median duration of fecal SARS-CoV-2 shedding was longer than that in nasopharyngeal swabs, with durations of 19 and 16 days, respectively. And the longest times of SARS-CoV-2 RNA persistent positive testing and viral shedding were 40 days and 43 days, respectively. The relatively long virus shedding duration could pose a great challenge for health systems as the patient pool flows slowly and takes up substantial health facility resources. While it is impossible to host all positive cases in hospitals throughout the virus shedding period, it is possible to shift less-acute cases to other temporary facilities as done in Wuhan. It is worth noting that the nasopharyngeal swabs and feces collected on the day of death of the three critically ill patients were still positive. This suggests that the persistence of the virus may have an impact on the disease prognosis, and it is urgent to screen and develop effective antiviral drugs.
Unfortunately, currently, there are no effective antiviral drugs. Drugs such as Remdesivir, kaletra, arbidol, chloroquine phosphate and some Chinese traditional medicines have shown certain effects but still lack rigorous and proven evidence [28-31]. Clinical trials of these drugs are currently ongoing. The treatment of all our patients was basically based on interferon alpha nebulization plus the antiviral regimen of arbidol or kaletra. However, without a controlled study, it is difficult to determine whether it is the natural fluctuation of the virus replication or the effect of the drug.
Since there were no available testing kits in the early stage of the COVID-19 epidemic, data on antibodies against SARS-CoV-2 were only collected in the follow-up after discharge. We observed a high positive rate of IgG and a reduction in the IgG level at a median of 48 days (IQR 44 to 53 days) from symptom onset, which was within 6 to 8 weeks from onset. As reported by Long, IgG levels start to decrease within 2-3 months after infection [32]. These findings may challenge attempts to control COVID-19 through universal immunization, as patients with reduced antibody levels may be re-infected. Of course, the subsequent changes in antibody levels require further observation.
There are some limitations in this study. Due to the barriers to data collection, the clinical data of all 168 patients in the entire Hainan Province have not been collected.