1.Mazanko MS, Gorlov IF, Prazdnova EV, Makarenko MS, Usatov AV, Bren AB et al. Bacillus probiotic supplementations improve laying performance, egg quality, hatching of laying hens, and sperm quality of roosters. Probiotics Antimicro.2018; 10(2):367–373. https://doi.org/10.1007/s12602–017–9369–4
2.Leeson S. Future considerations in poultry nutrition. Poult Sci.2012; 91(6):1281. https://doi.org/10.3382/ps.2012–02373
3.Bortoluzzi C, Pedroso AA, Mallo JJ, Puyalto M, Kim WK, Applegate TJ. Sodium butyrate improved performance while modulating the cecal microbiota and regulating the expression of intestinal immune-related genes of broiler chickens. Poult Sci.2017; 96(11):3981–3993. https://doi.org/10.3382/ps/pex218
4.Clavijo V, Florez MJV. The gastrointestinal microbiome and its association with the control of pathogens in broiler chicken production: A review. Poult Sci.2018; 97(3):1006–1021. https://doi.org/10.3382/ps/pex359
5.Hadar N, Debelius JW, Rob K, Omry K. Microbial endocrinology: the interplay between the microbiota and the endocrine system. Fems Microbiol Rev.2015; 39(4):509–521. https://doi.org/10.1093/femsre/fuu010
6.Celi P, Cowieson AJ, Fru-Nji F, Steinert RE, Kluenter A-M, Verlhac V. Gastrointestinal functionality in animal nutrition and health: New opportunities for sustainable animal production. Anim Feed Sci Tech.2017:88–100. https://doi.org/10.1016/j.anifeedsci.2017.09.012
7.Funk C, Braune A, Grabber JH, Steinhart H, Bunzel M. Model studies of lignified fiber fermentation by human fecal microbiota and its impact on heterocyclic aromatic amine adsorption. Mutat Res-Fund Mol M.2007; 624(1):41–48. https://doi.org/10.1016/j.mrfmmm.2007.03.010
8.Klaassen CD, Cui JY. Review: Mechanisms of how the intestinal microbiota alters the effects of drugs and bile acids. Drug Metab Dispos.2015; 43(10):1505–1521. https://doi.org/10.1124/dmd.115.065698
9.Prayoonthien P, Nitisinprasert S, Keawsompong S. In vitro fermentation of copra meal hydrolysate by chicken microbiota. 3 Biotech.2018; 8(1):41. https://doi.org/10.1007/s13205–017–1058–1
10.Trompette A, Gollwitzer ES, Yadava K, Sichelstiel AK, Sprenger N, Ngom-Bru C et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat Med.2014; 20(2):159–166. https://doi.org/10.1038/nm.3444
11.Lee K, Lillehoj HS, Siragusa GR. Direct-fed microbials and their impact on the intestinal microflora and immune system of chickens. J Poult Sci.2010:1001160039. https://doi.org/10.2141/jpsa.009096
12.Hooper LV, Littman DR, Macpherson AJ. Interactions between the microbiota and the immune system. Science.2012; 336(6086):1268–1273. https://doi.org/10.1126/science.1223490
13.Clark A, Mach N. Exercise-induced stress behavior, gut-microbiota-brain axis and diet: a systematic review for athletes. J Int Soc Sports Nutr.2016; 13:43. https://doi.org/10.1186/s12970–016–0155–6
14.Backhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A et al. The gut microbiota as an environmental factor that regulates fat storage. P Natl Acad Sci USA.2004; 101(44):15718–15723. https://doi.org/10.1073/pnas.0407076101
15.Wen C, Yan W, Sun C, Ji C, Zhou Q, Zhang D et al. The gut microbiota is largely independent of host genetics in regulating fat deposition in chickens. Isme J.2019; 13(6):1422–1436. https://doi.org/10.1038/s41396–019–0367–2
16.Sonnenburg JL, Backhed F. Diet-microbiota interactions as moderators of human metabolism. Nature.2016; 535(7610):56–64. https://doi.org/10.1038/nature18846
17.Nahashon SN, Nakaue HS, Snyder SP, Mirosh LW. Performance of single comb White Leghorn layers fed corn-soybean meal and barley-corn-soybean meal diets supplemented with a direct-fed microbial. Poult Sci.1994; 73(11):1712–1723. https://doi.org/10.3382/ps.0731712
18.Karl JP, Meydani M, Barnett JB, Vanegas SM, Barger K, Fu X et al. Fecal concentrations of bacterially derived vitamin K forms are associated with gut microbiota composition but not plasma or fecal cytokine concentrations in healthy adults. Am J Clin Nutr.2017; 106(4):1052–1061. https://doi.org/10.3945/ajcn.117.155424
19.Magnusdottir S, Ravcheev D, de Crecy-Lagard V, Thiele I. Systematic genome assessment of B-vitamin biosynthesis suggests co-operation among gut microbes. Front Genet.2015; 6:148. https://doi.org/10.3389/fgene.2015.00148
20.Presti I, D’Orazio G, Labra M, La Ferla B, Mezzasalma V, Bizzaro G et al. Evaluation of the probiotic properties of new Lactobacillus and Bifidobacterium strains and their in vitro effect. Appl Microbiol Biotechnol.2015; 99(13):5613–5626. https://doi.org/10.1007/s00253–015–6482–8
21.Celi P, Verlhac V, Calvo EP, Schmeisser J, Kluenter A-M. Biomarkers of gastrointestinal functionality in animal nutrition and health. Anim Feed Sci Tech.2019; 250:9–31. https://doi.org/10.1016/j.anifeedsci.2018.07.012
22.Tremellen K, Pearce K. Dysbiosis of gut microbiota (DOGMA) - A novel theory for the development of polycystic ovarian syndrome. Med Hypotheses.2012; 79(1):104–112. https://doi.org/10.1016/j.mehy.2012.04.016
23.Escobar-Morreale HF, Millán JL, San. Abdominal adiposity and the polycystic ovary syndrome. Trends Endocrin Met.2007; 18(7):266–272. https://doi.org/10.1016/j.tem.2007.07.003
24.Gavrieli Y, Sherman Y, Ben-Sasson SA. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. Journal Cell Biol.1992; 119(3):493–501. https://doi.org/10.1083/jcb.119.3.493
25.Magoc T, Salzberg SL. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics.2011; 27(21):2957–2963. https://doi.org/10.1093/bioinformatics/btr507
26.Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods.2010; 7(5):335–336. https://doi.org/10.1038/nmeth.f.303
27.Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics.2011; 27(16):2194–2200. https://doi.org/10.1093/bioinformatics/btr381
28.Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods.2013; 10(10):996–998. https://doi.org/10.1038/nmeth.2604
29.DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol.2006; 72(7):5069–5072. https://doi.org/10.1128/aem.03006–05
30.Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol.2007; 73(16):5261–5267. https://doi.org/10.1128/aem.00062–07
31.Algina J, Keselman HJ. Comparing squared multiple correlation coefficients: Examination of a confidence interval and a test significance. Psychol Methods.1999; 4(1):76–83. https://doi.org/10.1037/1082–989X.4.1.76
32.Smith CA, Want EJ, O’Maille G, Abagyan R, Siuzdak G. XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Analytical chemistry.2006; 78(3):779–787. https://doi.org/10.1021/ac051437y
33.Oberacher H, Whitley G, Berger B. Evaluation of the sensitivity of the ‘Wiley registry of tandem mass spectral data, MSforID’ with MS/MS data of the ‘NIST/NIH/EPA mass spectral library’. J Mass Spectrom.2013; 48(4):487–496. https://doi.org/10.1002/jms.3184
34.Hastie T, Tibshirani R, Narasimhan B, Chu G: Impute: Imputation for Microarray Data. R package version 1.44.40. In.; 2014.
35.Chan EC, Pasikanti KK, Nicholson JK. Global urinary metabolic profiling procedures using gas chromatography-mass spectrometry. Nat protoc.2011; 6(10):1483–1499. https://doi.org/10.1038/nprot.2011.375
36.Dunn WB, Broadhurst D, Begley P, Zelena E, Francis-McIntyre S, Anderson N et al. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat protoc.2011; 6(7):1060–1083. https://doi.org/10.1038/nprot.2011.335
37.Xia X, Li G, Ding Y, Ren T, Zheng J, Kan J. Effect of whole grain Qingke (Tibetan Hordeum vulgare L. Zangqing 320) on the serum lipid levels and intestinal microbiota of rats under high-fat diet. J Agric Food Chem.2017; 65(13):2686–2693. https://doi.org/10.1021/acs.jafc.6b05641
38.Scott KPD, S. H, Flint HJ. Dietary fibre and the gut microbiota. Food Nutr Bull.2010; 33(3):201–211. https://doi.org/10.1111/j.1467–3010.2008.00706.x
39.Apajalahti J, Vienola K. Interaction between chicken intestinal microbiota and protein digestion. Anim Feed Sci Tech.2016; 221:323–330. https://doi.org/10.1016/j.anifeedsci.2016.05.004
40.Wang J, Yue H, Wu S, Zhang H, Qi G. Nutritional modulation of health, egg quality and environmental pollution of the layers. Anim Nutr.2017; 3(2):91–96. https://doi.org/10.1016/j.aninu.2017.03.001
41.Johnson AL, Woods DC. Dynamics of avian ovarian follicle development: cellular mechanisms of granulosa cell differentiation. Gen Comp Endocrinol.2009; 163(1–2):12–17. https://doi.org/10.1016/j.ygcen.2008.11.012
42.Richards MP, Poch SM, Coon CN, Rosebrough RW, Ashwell CM, McMurtry JP. Feed restriction significantly alters lipogenic gene expression in broiler breeder chickens. J Nutr.2003; 133(3):707–715. https://doi.org/10.1093/jn/133.3.707
43.Richards MP, Proszkowiec-Weglarz M. Mechanisms regulating feed intake, energy expenditure, and body weight in poultry. Poult Sci.2007; 86(7):1478–1490. https://doi.org/10.1093/ps/86.7.1478
44.Chen SE, McMurtry JP, Walzem RL. Overfeeding-induced ovarian dysfunction in broiler breeder hens is associated with lipotoxicity. Poult Sci.2006; 85(1):70–81. https://doi.org/10.1093/ps/85.1.70
45.Walzem RL, Davis PA, Hansen RJ. Overfeeding increases very low density lipoprotein diameter and causes the appearance of a unique lipoprotein particle in association with failed yolk deposition. J Lipid Res.1994; 35(8):1354–1366.
46.Pan YE, Liu ZC, Chang CJ, Xie YL, Chen CY, Chen CF et al. Ceramide accumulation and up-regulation of proinflammatory interleukin–1beta exemplify lipotoxicity to mediate declines of reproductive efficacy of broiler hens. Domest Anim Endocrinol.2012; 42(3):183–194. https://doi.org/10.1016/j.domaniend.2011.12.001
47.Bilgili SF, Renden JA. Relationship of body fat to fertility in broiler breeder hens. Poult Sci.1985; 64(7):1394–1396. https://doi.org/10.3382/ps.0641394
48.Xie YL, Pan YE, Chang CJ, Tang PC, Huang YF, Walzem RL et al. Palmitic acid in chicken granulosa cell death-lipotoxic mechanisms mediate reproductive inefficacy of broiler breeder hens. Theriogenology.2012; 78(9):1917–1928. https://doi.org/10.1016/j.theriogenology.2012.07.004
49.Witty JP, Bridgham JT, Johnson AL. Induction of apoptotic cell death in hen granulosa cells by ceramide. Endocrinology.1996; 137(12):5269–5277. https://doi.org/10.1210/endo.137.12.8940345
50.Listenberger LL, Ory DS, Schaffer JE. Palmitate-induced apoptosis can occur through a ceramide-independent pathway. J Biol Chem.2001; 276(18):14890–14895. https://doi.org/10.1074/jbc.M010286200
51.Mu YM, Yanase T, Nishi Y, Tanaka A, Saito M, Jin CH et al. Saturated FFAs, palmitic acid and stearic acid, induce apoptosis in human granulosa cells. Endocrinology.2001; 142(8):3590–3597. https://doi.org/10.1210/endo.142.8.8293
52.Zhou J, Chen J, Hu C, Xie Z, Li H, Wei S et al. Exploration of the serum metabolite signature in patients with rheumatoid arthritis using gas chromatography-mass spectrometry. J Pharm Biomed Anal.2016; 127:60–67. https://doi.org/10.1016/j.jpba.2016.02.004
53.Sun LW, Zhang HY, Wu L, Shu S, Xia C, Xu C et al. (1)H-Nuclear magnetic resonance-based plasma metabolic profiling of dairy cows with clinical and subclinical ketosis. J Dairy Sci.2014; 97(3):1552–1562. https://doi.org/10.3168/jds.2013–6757
54.Videnska P, Faldynova M, Juricova H, Babak V, Sisak F, Havlickova H et al. Chicken faecal microbiota and disturbances induced by single or repeated therapy with tetracycline and streptomycin. BMC Vet Res.2013; 9(1):30. https://doi.org/10.1186/1746–6148–9–30
55.Xiao Y, Xiang Y, Zhou W, Chen J, Li K, Yang H. Microbial community mapping in intestinal tract of broiler chicken. Poult Sci.2017; 96(5):1387–1393. https://doi.org/10.3382/ps/pew372
56.Power SE, O’Toole PW, Stanton C, Ross RP, Fitzgerald GF. Intestinal microbiota, diet and health. Br J Nutr.2014; 111(3):387–402. https://doi.org/10.1017/S0007114513002560
57.Morgan NK, Walk CL, Bedford MR, Burton EJ. The effect of dietary calcium inclusion on broiler gastrointestinal pH: quantification and method optimization. Poult Sci.2014; 93(2):354–363. https://doi.org/10.3382/ps.2013–03305
58.Ley RE, Fredrik BC, Peter T, Lozupone CA, Knight RD, Gordon JI. Obesity alters gut microbial ecology. P Natl Acad Sci USA.2005. https://doi.org/10.1073/pnas.0504978102
59.Mujico JR, Baccan GC, Gheorghe A, Diaz LE, Marcos A. Changes in gut microbiota due to supplemented fatty acids in diet-induced obese mice. Br J Nutr.2013; 110(4):711–720. https://doi.org/10.1017/s0007114512005612
60.Serino M, Luche E, Gres S, Baylac A, Berge M, Cenac C et al. Metabolic adaptation to a high-fat diet is associated with a change in the gut microbiota. Gut.2012; 61(4):543–553. https://doi.org/10.1136/gutjnl–2011–301012
61.Wang H, Ji Y, Yin C, Deng M, Tang T, Deng B et al. Differential analysis of gut microbiota correlated with oxidative stress in sows with high or low litter performance during lactation. Front Microbiol.2018; 9:1665. https://doi.org/10.3389/fmicb.2018.01665
62.Dicksved J, Ellstrom P, Engstrand L, Rautelin H. Susceptibility to Campylobacter infection is associated with the species composition of the human fecal microbiota. M Bio.2014; 5(5):e01212–01214. https://doi.org/10.1128/mBio.01212–14
63.Lecomte V, Kaakoush NO, Maloney CA, Raipuria M, Huinao KD, Mitchell HM et al. Changes in gut microbiota in rats fed a high fat diet correlate with obesity-associated metabolic parameters. PLoS One.2015; 10(5):e0126931. https://doi.org/10.1371/journal.pone.0126931
64.Miller MB, Bassler BL. Quorum sensing in bacteria. Annu Rev Microbiol.2001; 55:165–199. https://doi.org/10.1146/annurev.micro.55.1.165
65.Waters CM, Bassler BL. Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol.2005; 21:319–346. https://doi.org/10.1146/annurev.cellbio.21.012704.131001
66.Donova MV, Egorova OV. Microbial steroid transformations: current state and prospects. Appl Microbiol Biotechnol.2012; 94(6):1423–1447. https://doi.org/10.1007/s00253–012–4078–0
67.Liu WH, Kuo CW, Wu KL, Lee CY, Hsu WY. Transformation of cholesterol to testosterone by Mycobacterium sp. J Ind Microbiol Biot.1994; 13(3):167–171. https://doi.org/10.1007/BF01584002
68.Egorova OV, Nikolayeva VM, Sukhodolskaya GV, Donova MV. Transformation of C19-steroids and testosterone production by sterol-transforming strains of Mycobacterium spp. J Mol Catal B-Enzym.2009; 57(1):198–203. https://doi.org/10.1016/j.molcatb.2008.09.003
69.Davelaar FG, Smit HF, Hovind-Hougen K, Dwars RM, Vandervalk PC. Infectious typhlitis in chickens caused by spirochetes. Avian pathol.1986; 15(2):247–258. https://doi.org/10.1080/03079458608436285
70.Dwars RM, Davelaar FG, Smit HF. Infection of broiler parent hens with avian intestinal spirochaetes: Effects on egg production and chick quality. Avian pathol.1993; 22(4):693–701. https://doi.org/10.1080/03079459308418957
71.Smit HF, Dwars RM, Davelaar FG, Wijtten GA. Observations on the influence of intestinal spirochaetosis in broiler breeders on the performance of their progeny and on egg production. Avian pathol.1998; 27(2):133–141. https://doi.org/10.1080/03079459808419314