Plant materials and growth conditions
All Arabidopsis (Arabidopsis thaliana) lines analyzed in this study are in the Columbia (Col-0) accession. sdg8-229 (SALK_026442), sdg7-229 (SALK_131218), sdg7-3 (SALK_072682), sdg7-4 (WiscDsLox430F09), clf-28 (SALK_139371). proLBD16:GUS30, proPLT2:PLT2-YFP31, proSHR:SHR-GFP32, DR5:GUS33, proWOX5:NLS-GFP34 proCYCB1;2:CYCB1;2-NLS-YFP35, proCLF:CLF-GFP36 were used. Primers used for genotyping are listed in Supplementary Table 16.
Arabidopsis seedlings were grown on half-strength Murashige and Skoog (MS) medium plates. MS salts (Duchefa Biochemie), 2-(N-morpholino)ethanesulfonic acid (Nacalai Tesque, Kyoto) and 0.8% (w/v) agar (Nacalai Tesque, Kyoto) were added to distilled water. The pH was adjusted from 4.3 to 5.6 with KOH. After autoclaving at 121ºC for 20 min, 50 ml medium was poured into individual sterile No. 2 square culture dishes (Eiken Chemical) on a clean bench.
Seeds were surface sterilized with 70% (v/v) ethanol for 10 min, washed three times with sterile distilled water and sown on half-strength MS plates. After stratification at 4ºC in the dark for up to 7 days, the plates were placed in dish drainer trays located in a growth chamber at 22ºC under constant light conditions (200 µl m2 s− 1).
Cloning and plant transformation
To generate the construct harboring the SDG8 promoter, the genomic region preceding the gene was amplified from Col-0 genomic DNA with primers proSDG8-FW and proSDG8-RV using PrimeSTAR GXL DNA polymerase (TaKaRa) through gradient PCR. The resulting PCR product was subjected to electrophoresis on an agarose gel, purified from the gel using a gel/PCR extraction kit (NIPPON Genetics) and then inserted into pENTR/D-TOPO (Thermo Fisher Scientific) using Gateway cloning. The identity of the inserted sequence was confirmed via Sanger sequencing on an Applied Biosystems 3130 genetic analyzer (Applied Biosystems). Supplementary Table 16 provides the list of primers employed for the promoter cloning. The promoter fragments were recombined into the pBGWSF7.0 GUS-GFP37 vector via LR reaction facilitated by LR Clonase II mix (Thermo Fisher Scientific). Following verification of the junction between the promoter insertion and GUS-GFP, the resulting plasmids were introduced into Agrobacterium (Agrobacterium tumefaciens) strain GV3101. Positive Agrobacterium colonies were used for transformation of Arabidopsis plants through the floral dip method38. For gSDG7-VENUS and gSDG7-GUS, a 4461-bp SDG7 genomic fragment (from − 1051 bp to + 3410 bp; the A of the start codon was set as + 1) amplified with the primers gSDG7-FW and gSDG7-RV was cloned into the pCR8/GW/TOPO vector (Invitrogen). An SfoI restriction site was introduced upstream of the SDG7 stop codon through mutagenesis PCR using the primers mSDG7-SfoI-FW and mSDG7-SfoI-RV. VENUS and GUS fragments were then inserted into the SfoI site of the pCR8/GW/TOPO-gSDG8 plasmid. Finally, the gSDG7-VENUS or gSDG7-GUS cassette was recombined into pEarleyGate303 using LR Clonase II (Invitrogen). To generate the pro35S:SDG7-GR plasmid, a SDG7 cDNA fragment of 1174 bp with 85 bp of the 5′ untranslated region (5′ UTR) was amplified by the primers SDG7-KpnI-FW and SDG7-ApaI-RV. After digestion, the SDG7 cDNA without the stop codon was inserted into pGreen0281 in-frame with the sequence encoding GR-HA.
The resulting plasmids were introduced into Agrobacterium (strain GV3101. Positive Agrobacterium colonies were used for transformation of Arabidopsis plants through the floral dip method38.
Data comparison
Publicity available expression datasets were obtained from The Bio-Analytic Resource for Plant Biology database (http://bar.utoronto.ca) or from published work13. After reorganizing gene expression levels in Microsoft Excel (Version 16.79.2), a heatmap was generated with the packages heatmaply (Version 1.4.2) or superheat (Version 0.1.0) in R (Version 4.3.1). Venn diagrams were generated using Venny2.1 (https://bioinfogp.cnb.csic.es/tools/venny/) or BioVenn (https://www.biovenn.nl) on the respective websites, or ggVennDiagram (Version 1.2.3) in R (Version 4.3.1). p-values were calculated based on the hypergeometric test (http://nemates.org/MA/progs/overlap_stats_prog.html). Upset plots were generated using the UpSet R Shiny App (https://gehlenborglab.shinyapps.io/upsetr/).
Protein structure prediction and comparison
Protein structure was predicted using Alpha fold 2.039 (Version 1.5.3) on Google Colab (https://colab.research.google.com/github/sokrypton/ColabFold/blob/main/AlphaFold2.ipynb). The amino acid sequences for five class II SDG family members were obtained from the TAIR website (https://www.arabidopsis.org). The crystal structure data of the ATXR5 SET domain in complex with K36me3 (PDB entry 5VAC17) was obtained from the Protein Data Bank (https://doi.org/10.2210/pdb5VAC/pdb). Comparison between predicted SDG proteins and ATXR5 was conducted using the PyMOL Molecular Graphics System (Version 2.5.2).
Phenotyping
For plant height analysis, plants were grown on soil. The final height of the main stem bearing an inflorescence was measured. Photographs of the entire plant were taken, and plant height was measured with ImageJ software (NIH).
For root phenotypic analysis, seedlings were grown on vertically oriented MS plates. The root length of seedlings 7 days after germination (7 DAG) was measured. Photographs of the entire seedling were taken. The length from the base of the hypocotyl to the root tip was measured with ImageJ software (NIH). To quantify lateral root number, the roots of 7-DAG seedlings were used. The lateral root number was counted using a microscope (Olympus SZ).
For leaf phenotypic analysis, the 5th true leaves from plants grown on soil were used. Leaves were excised with forceps and placed into glass vials containing FAA (formalin: ice-cold acetic acid:70% [v/v] ethanol at a volume ratio of 1:1:18) for fixation. After 30 min in Faa under vacuum, the leaves were transferred to a chloral hydrate/glycerol/H2O mixture solution (8 g: 1 mL: 2 mL) and incubated for at least 16 h until clear. Leaves were then placed onto glass slides (Matsunami Glass Industry Co., Ltd.), and covered with coverslips (Matsunami Glass Industry Co., Ltd.). Images were taken with an AXIO Zoom V16 stereo microscope (Zeiss). Leaf area and leaf length from the leaf tip to the petiole were measured with ImageJ software (NIH). To quantify palisade cell size and number, the same leaf samples were used. The cells were imaged using an AxioScope A light microscope (Zeiss). The epidermal cell area was measured with ImageJ software (NIH). Cell numbers were calculated from leaf and cell areas.
For petal phenotypic analysis, plants were grown on soil. Petals from stage 15 flowers were used. The petal area was measured with ImageJ software (NIH). To quantify cell size and number, petal epidermal cells were imaged by scanning electron microscopy (SEM). For SEM, petals were placed in FAA (45% [v/v] ethanol, 2.5% [v/v] formaldehyde, and 2.5% [v/v] acetic acid), vacuum-infiltrated until the tissues sank and incubated at room temperature for at least 16 h. The fixed tissues were then passed through a gradient ethanol series (50% [ethanol:water, v/v], 60%, 70%, 80%, 90%, 95%, 100% × 2) for 20 min each, followed by a gradient acetone series (25% [acetone:ethanol, v/v], 50%, 75%, 95%, 100% × 2) for 30 min each. Then, the tissues were dried with an EM CPD300 critical point dryer with liquid CO2 (Leica Microsystems). Samples were gold-coated with a coating time of 45 s using a gold coater instrument (Hitachi E 1010). The tissues were imaged with a S-4700 scanning electron microscope (Hitachi) with an accelerating voltage of 15 kV. At least 10 petals for each genotype were observed; representative images are shown. Cell area was measured with ImageJ software (NIH). Cell numbers were calculated from petal and cell areas.
All plots were generated using ggplot2 (Version 3.4.3) in R (Version 4.3.1). Significant differences were determined through one-way analysis of variance (ANOVA) tests, followed by a post-hoc Tukey's honest significant difference (HSD) test (https://astatsa.com/OneWay_Anova_with_TukeyHSD/).
ChIP-seq
ChIP-seq was conducted following the procedures reported previously with minor modifications40. Two grams of 5-day-old seedlings were used. Frozen tissues were ground to a fine powder using a mortar and pestle and transferred to nuclei isolation buffer (10 mM HEPES, 1 M sucrose, 5 mM KCl, 5 mM MgCl2, 5 mM EDTA, 16% [v/v] formaldehyde, 20% [v/v] Triton X-100, β-mercaptoethanol, 100 mM Pefabloc) for 10 min to crosslink proteins and DNA. The reaction was quenched by adding 0.125 M glycine. After removal of debris by filtration through two layers of Miracloth, the resulting solution was centrifuged at 3,000g for 10 min at 4°C. Pellets were resuspended in nuclei isolation buffer. Chromatin was separated using nuclei separation buffer (1 M HEPES (pH = 7.6), 3 M KCl, 1 M MgCl2, 0.5 M EDTA) by centrifugation. The pellets were dissolved in SDS lysis buffer (1 M Tris-HCl (pH = 7.8), 10% [w/v] SDS, 0.5 M EDTA) and ChIP dilution buffer (50 mM Tris-HCl (pH = 7.8), 0.167 M NaCl, 1.1% [v/v] Triton-X, 0.11% [v/v] sodium deoxycholate). Then, sonication (Time: 20 min, Duty cycle: 5%, Intensity: 4, Cycles per burst: 200, Temperature: 5°C, Power mode frequency: Sweeping) was conducted with a Covaris M2 (M&S instruments) to obtain approximately 300-bp sheared DNA fragments. Immunoprecipitation was conducted using anti-H3K36me3, anti-H3K36me2 and anti-H3 antibodies (H3K36me3, ab9050; H3K36me2, ab9049; H3, abcam), anti-GFP antibody (SAB4701015; Sigma-Aldrich), and Dynabead Protein A (Thermo Fisher) for at least 16 h at 4ºC. Beads were washed with low salt RIPA buffer (50 mM Tris-HCl (pH = 7.8), 0.15 M NaCl, 1 mM EDTA, 0.1% [w/v] SDS, 1% [v/v] Triton-X, 0.1% [v/v] sodium deoxycholate), high-salt RIPA buffer (50 mM Tris-HCl (pH = 7.8), 0.3 M NaCl, 1 mM EDTA, 0.1% [w/v] SDS, 1% [v/v] Triton-X, 0.1% [v/v] sodium deoxycholate), LNDET buffer (0.25 M LiCl, 1% [v/v] IGEPAL, 1% [v/v] sodium deoxycholate, 1 mM EDTA, 10 mM Tris-HCl (pH = 7.8)) and 1× TE (10 mM Tris-HCl, 0.1 mM EDTA pH 8.1). Then, ChIP dilution buffer was added to beads and incubated at 65ºC overnight to reverse the crosslinking. RNase and Proteinase K were then added to digest residual RNA and proteins. ChIP DNA was purified with a Monarch PCR & DNA Cleanup Kit (Monarc). To generate libraries for sequencing, a ThruPLEX DNA-seq kit (RUBICON GENOMICS) was used following the manufacturer’s instructions. Libraries were purified with AMPure beads (Beckman Coulter) and sequenced on a NextSeq 500 or NovaSeq 6000 instrument (Illumina).
Mapping of ChIP-seq data for histone modification was performed as reported previously39. Using Bowtie (version 1.2.2), bam files were created by selecting the same sequences matching the Arabidopsis thaliana TAIR10 reference genome (https://www.arabidopsis.org). Based on the bam files, bed files were created with bedtools (Version 2.27.0). The coverage was determined in R (Version 3.5.2). Mapping of binding peaks for histone modification enzymes was also conducted as described previously28. The raw sequencing reads underwent quality checks and trimming using FastQC (Version 0.11.7) and Trimmomatic (Version 0.38), respectively. Subsequently, mapping was carried out with Bowtie2 (Version 2.3.4.2) using the resulting fastq files. Peaks were then identified using SICER (Version 1.1). Read counting was performed through featureCounts (Version 1.6.3). Heatmaps were generated using deeptools (Version 3.2.1). Motif analysis was conducted using HOMER (Version 4.1). Binding peaks were visualized in the Integrative Genomics Viewer (IGV) Web App (https://igv.org/app/). The ChIP-seq data have been submitted to the DDBJ database (SDG7/SDG8: DRA17907, H3K36me2: DRA17938, and H3K36me3: DRA17939).
Gene Ontology (GO) term enrichment analysis
GO term analysis was conducted with the online tool g:Profiler41 (https://biit.cs.ut.ee/gprofiler_beta/gost) with g:GOS function. To reduce duplicated GO terms, the agriGO42 database was used (http://bioinfo.cau.edu.cn/agriGO/). The p-values produced by the GO analysis were filtered by REVIGO43 (http://revigo.irb.hr/). Original files of the network and tree maps were generated by the REVIGO website (http://revigo.irb.hr/). The graphs of the tree maps were created using ggplot2 (Version 3.4.3) in R (Version 4.3.1). The final network figure was generated in Cytoscape (Version 3.10.1).
Chromatin immunoprecipitation quantitative PCR (ChIP-qPCR)
ChIP-qPCR was conducted following the procedures reported previously with minor modifications44. To conduct ChIP, up to 0.8 g (fresh weight) of 5-day-old seedlings grown on half-strength MS plates was harvested in vials filled with phosphate-buffered saline (PBS) (137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4 and 2 mM KH2PO4, pH 7.4). Fixation was performed in 1% (v/v) formaldehyde for 15 min. During fixation, tissues were vacuum-infiltrated three to five times until they sank. Afterwards, samples were moved to PBS with 0.125 M glycine for 5 min to quench the fixation. Seedlings were rinsed with ice-cold PBS twice, frozen in liquid nitrogen, and stored in a deep freezer until use. Tissues were ground to a fine powder using a mortar and pestle and dissolved in Nuclei Extraction Buffer (100 mM MOPs pH 8.0, 10 mM MgCl2, 0.25 M sucrose, 0.5% [w/v] dextran T-40, 2.5% [w/v] Ficoll 400, 9.36 µL/mL β-mercaptoethanol and 10 µL/mL protease inhibitors) to extract protein–DNA complexes. After filtration over two layers of Miracloth and centrifugation, chromatin pellets were resuspended in nuclei lysis buffer (10 mM EDTA pH 8.0, 50 mM Tris-HCl, pH 8.0, and 1% [w/v] SDS). ChIP dilution buffer (16.7 mM Tris-HCl pH 8.0, 1.2 mM EDTA, 167 mM NaCl, 1.1% [v/v] Triton X-100 and 0.01% [w/v] SDS) was then added to each sample. Sonication was conducted with an ultrasonic disruptor (TOMY) to obtain 200–700-bp sheared DNA. ChIP dilution buffer with 22% (v/v) Triton X-100 was mixed in with the sonicated samples and centrifuged to remove debris. After preclearing by Dynabeads™ Protein A (Thermo Fisher) and collection of input DNA, immunoprecipitation was conducted at 4°C overnight using Dynabeads and commercial antibodies (GFP, SAB4301138; HA, 12C5; H3K27me3, ab6002; H3K36me3, ab9050; H3K36me2, ab9049 Abcam). Beads were successively washed in low salt buffer (2 mM EDTA, 20 mM Tris-HCl pH 8.1, 150 mM NaCl, 0.1% [w/v] SDS and 1% [v/v] Triton X-100), LiCl buffer (0.25 M LiCl, 1% [w/v] Nonidet P-40, 1% [w/v] deoxycholate, 1 mM EDTA, 10 mM Tris-HCl, pH 8.1), and Tris EDTA buffer (TE, 10 mM Tris-HCl, 0.1 mM EDTA, pH 8.1) twice each for 10 min at 4°C. Elution of protein–DNA from beads was conducted in nuclei lysis buffer by incubation for 25 min at 65°C twice. After combining both eluates, crosslinking was reversed with NaCl overnight at 65°C. DNA was purified with a QIAquick PCR purification kit (Qiagen) according to the manufacturer’s instructions with slight modifications. qPCR was performed as described above. Primer sequences are listed in Supplementary Table 16. Significant differences were calculated based on one-way ANOVA tests followed by a post-hoc Tukey's HSD test.
RNA-seq
Total RNA was extracted from the entire root of 5-day-old MS-grown seedlings. An RNeasy plant mini kit (Qiagen) was employed to extract RNA following the manufacturer’s instructions. Using total RNA treated with DNase I (Qiagen), sequencing libraries were prepared using a NEBNext Poly(A) mRNA Magnetic Isolation Module (NEB) and NEBNext Ultra TMII Directional RNA Library Prep Kit (NEB). After confirmation of library quality on a bioanalyzer (Agilent), sequencing was conducted using a NovaSeq 6000 instrument (Illumina).
Prior to mapping, the raw sequencing reads underwent quality checks and trimming using FastQC (Version 0.11.7) and Trimmomatic (Version 0.38), respectively. Subsequently, mapping against TAIR10 genome was carried out with HISAT2 (Version 2.1.0) using the resulting fastq files. Read counting and calculation of FPKM and TPM were performed through featureCounts (Version 1.6.3). Hierarchical clustering and principal component analysis were conducted with the R package stat (Version 3.6.1). Differentially expressed genes were identified using DESeq2 (Version 1.24.0). Volvano plots were generated by plotly (Version 4.9.2.1). Reads were visualized in the Integrative Genomics Viewer (IGV) Web App (https://igv.org/app/). The RNA-seq data have been submitted to the DDBJ database (DRA17906).
β-glucuronidase (GUS) staining
For GUS staining, 5-day-old seedlings grown on MS plates were fixed in ice-cold 90% (v/v) acetone for 10–15 min. The samples were washed with sterile water, followed by GUS buffer twice (50 mM phosphoric acid buffer, 0.5 mM K3Fe[CN]6 [Nacalai Tesque, Kyoto], 0.5 mM K4Fe[CN]6 [Nacalai Tesque, Kyoto]). Subsequently, tissues were incubated at 37°C for 30 min to 1 h in GUS buffer with 1 mM X-Gluc (5-bromo-4-chloro-3-indolyl β-D-glucuronide) (Nacalai Tesque, Kyoto). To stop the staining reaction, samples were transferred into 70% (v/v) ethanol.
To observe GUS-stained tissues, samples were washed in sterile water three times, incubated in 4% (v/v) HCl with 20% (v/v) methanol for 15 min at 55°C. Then, the solution was changed to 70% (v/v) ethanol with 7% (w/v) NaOH and incubated for another 15 min at room temperature. Subsequently, tissues were successively incubated in 40% (v/v), 20%, 10% ethanol for 10 min. Finally, samples were incubated in 10% (v/v) ethanol with 50% (v/v) glycerol for 30 min and observed with an upright microscope (Zeiss Scope.A1) by differential interference contrast microscopy.
Confocal microscopy
Fluorescence observation of roots and seedlings was conducted using an FV1000 (Olympus), LSM710, or SP8 microscope (Leica). To generate seedling sections, tissues were placed into DISPOSABLE BASE MOLDS M475-2 (Simport) containing 5% (w/v) agar (Nippon Gene). The molds were kept for at least 5 min to form agar blocks. Sections of 50 µm thickness were then prepared using a Linear Slicer PRO7 (Dosaka-em). Tissues were sandwiched between a NEO MICRO cover glass (MATSUNAMI) and a slide glass (MATSUNAMI) for GFP fluorescence observation. During the observation, a water-immersion lens (×60) was used as the objective lens, and the chosen channel was the GFP channel (500–570 nm).
Fluorescence observation of the inflorescences was conducted using a LSM900 microscope (Carl Zeiss) as described previously45. After cutting the tip of the primary inflorescence to a length of approximately 0.5 cm with a razor blade, the primary inflorescence was immersed in a 1 mg/ml solution of propidium iodide (PI) for 2 min to stain the cell walls. The stained inflorescences were then inserted upright into half-strength MS medium, ensuring the plant surface was submerged in deionized water. After preparing the samples, fluorescence was promptly observed, and both 2D and 3D images were acquired. For observation, a water-immersion lens (×20) was used as the objective lens. In terms of the optical path setup, the Airy scan mode was selected, and the channels chosen were the GFP channel (500–570 nm) and the PI channel (590–700 nm). Additionally, the acquisition of 3D images involved moving the z-axis continuously to scan and create images.