1 Bartholomew, C. H., Agrawal, P. K. & Katzer, J. R. in Advances in Catalysis Vol. 31 (eds D. D. Eley, Herman Pines, & Paul B. Weisz) 135-242 (Academic Press, 1982).
2 Häkkinen, H. The gold–sulfur interface at the nanoscale. Nat. Chem. 4, 443-455 (2012).
3 Theofanidis, S.-A. et al. Effect of Rh in Ni-based catalysts on sulfur impurities during methane reforming. Appl. Catal. B: Environ. 267, 118691 (2020).
4 Zhou, W. et al. Impeding catalyst sulfur poisoning in aqueous solution by metal–organic framework composites. Small Methods 4, 1900890 (2020).
5 Väliheikki, A. et al. Deactivation of Pt/SiO2-ZrO2 diesel oxidation catalysts by sulphur, phosphorus and their combinations. Appl. Catal. B: Environ. 218, 409-419 (2017).
6 Bartholomew, C. H., Agrawal, P. K. & Katzer, J. R. Sulfur Poisoning of Metals. Adv. Catal. 31, 135-242 (1982).
7 Theofanidis, S. et al. Effect of Rh in Ni-based catalysts on sulfur impurities during methane reforming. Appl. Catal. B: Environ. 267, 118691 (2020).
8 Hakkinen, H. The gold-sulfur interface at the nanoscale. Nat. Chem. 4, 443-455 (2012).
9 Bailie, J. E. & Hutchings, G. J. Promotion by sulfur of gold catalysts for crotyl alcohol formation from crotonaldehyde hydrogenation. Chem. Commun., 2151-2152 (1999).
10 Abedi, S. & Morsali, A. Improved activity of palladium nanoparticles using a sulfur-containing metal–organic framework as an efficient catalyst for selective aerobic oxidation in water. New J. Chem. 41, 5846-5852, doi:10.1039/C7NJ00709D (2017).
11 Zhao, J. et al. Reversible Control of Chemoselectivity in Au-38(SR)(24) Nanocluster-Catalyzed Transfer Hydrogenation of Nitrobenzaldehyde Derivatives. J. Phys. Chem. Lett. 9, 7173-7179 (2018).
12 Rousseau, G. B. D., Bovet, N. & Kadodwala, M. Sulfur the archetypal catalyst poison? The sulfur-induced promotion of the bonding of unsaturated hydrocarbons on Cu(111). J. Phys. Chem. B 110, 21857-21864 (2006).
13 Baldyga, L. M., Blavo, S. O., Kuo, C.-H., Tsung, C.-K. & Kuhn, J. N. Size-Dependent Sulfur Poisoning of Silica-Supported Monodisperse Pt Nanoparticle Hydrogenation Catalysts. ACS Catal. 2, 2626-2629 (2012).
14 Boschen, J. S., Lee, J., Windus, T. L., Evans, J. W. & Liu, D. Size dependence of S-bonding on (111) facets of Cu nanoclusters. J. Phys. Chem. C 120, 10268-10274 (2016).
15 Shan, J., Li, M., Allard, L. F., Lee, S. & Flytzani-Stephanopoulos, M. Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts. Nature 551, 605-608 (2017).
16 Qiao, B. et al. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 3, 634-641 (2011).
17 Goodman, E. D. et al. Catalyst deactivation via decomposition into single atoms and the role of metal loading. Nat. Catal. 2, 748-755 (2019).
18 Jones, J. et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 353, 150-154 (2016).
19 Sun, Q. et al. Zeolite-encaged single-atom rhodium catalysts: Highly-efficient hydrogen generation and shape-selective tandem hydrogenation of nitroarenes. Angew. Chem. Int. Ed. 58, 18570-18576 (2019).
20 Shan, J., Li, M., Allard, L. F., Lee, S. & Flytzani-Stephanopoulos, M. Mild Oxidation of Methane to Methanol or Acetic Acid on Supported Isolated Rhodium Catalysts. Nature 551, 605 (2017).
21 Feng, S. et al. In situ formation of mononuclear complexes by reaction-induced atomic dispersion of supported noble metal nanoparticles. Nat. Commun. 10, 5281 (2019).
22 Feng, S., Lin, X., Song, X., Mei, B. & Ding, Y. Constructing Efficient Single Rh Sites on Activated Carbon via Surface Carbonyl Groups for Methanol Carbonylation. ACS Catal., 682-690 (2021).
23 Feng, S. et al. Preparation and regeneration of supported single-Ir-site catalysts by nanoparticle dispersion via CO and nascent I radicals. J. Catal. 382, 347-357 (2020).
24 National Institute of Standards and Technology, G. M., 20899 (2000). NIST X-ray Photoelectron Spectroscopy Database. NIST Standard Reference Database Number 20, doi:10.18434/T4T88K (retrieved [20200610]).
25 Ausloos, P. & Lias, S. G. H2S as a Free‐Radical Interceptor in the Gas‐Phase Radiolysis and Photolysis of Propane. J. Chem. Phys. 44, 521-529 (1966).
26 Larin, I. K., Messineva, N. A., Spasskii, A. I., Trofimova, E. M. & Turkin, L. E. Measurement of the rate constants for the reactions of the IO• radical with sulfur-containing compounds H2S, (CH3)2S, and SO2. Kinet. Catal. 41, 437-443 (2000).
27 Gonsalvi, L., Adams, H., Sunley, G. J., Ditzel, E. & Haynes, A. Steric and electronic effects on the reactivity of Rh and Ir complexes containing P−S, P−P, and P−O ligands. Implications for the effects of chelate ligands in catalysis. J. Am. Chem. Soc. 124, 13597-13612 (2002).
28 Haynes, A. et al. Promotion of iridium-catalyzed methanol carbonylation: Mechanistic studies of the cativa process. J. Am. Chem. Soc. 126, 2847-2861 (2004).
29 Cavallo, L. & Solà, M. A theoretical study of steric and electronic effects in the rhodium-catalyzed carbonylation reactions. J. Am. Chem. Soc. 123, 12294-12302 (2001).
30 Zhu, T., Jin, S. & Xu, M. Rhodium-catalyzed, highly enantioselective 1,2-addition of aryl boronic acids to α-ketoesters and α-diketones using simple, chiral sulfur–olefin ligands. Angew. Chem. Int. Ed. 51, 780-783 (2012).
31 Li, G. et al. Infrared spectroscopic study of hydrogen bonding topologies in the smallest ice cube. Nat. Commun. 11, 5449 (2020).
32 Zhou, J. et al. Ultraviolet photolysis of H2S and its implications for SH radical production in the interstellar medium. Nat. Commun. 11, 1547 (2020).
33 Chang, Y. et al. Hydroxyl super rotors from vacuum ultraviolet photodissociation of water. Nat. Commun. 10, 1250 (2019).
34 Zhang, B., Yu, Y., Zhang, Y. Y., Jiang, S. & Yang, X. Infrared spectroscopy of neutral water clusters at finite temperature: Evidence for a noncyclic pentamer. P. Natl. A. Sci. 117, 202000601 (2020).
35 Adrian et al. Time-resolved copper speciation during selective catalytic reduction of NO on Cu-SSZ-13. Nat. Catal. (2018).
36 Fabbri, E. et al. Dynamic surface self-reconstruction is the key of highly active perovskite nano-electrocatalysts for water splitting. Nat. Mater. 16, 925-931 (2017).
37 Charlotte et al. Unravelling structure sensitivity in CO2 hydrogenation over nickel. Nat. Catal. (2018).
38 Petrov, A. W. et al. Stable complete methane oxidation over palladium based zeolite catalysts. Nat. Commun. 9, 2545 (2018).
39 Liu, H. et al. QXAFS system of the BL14W1 XAFS beamline at the Shanghai Synchrotron Radiation Facility. J. Synchrotron radiat. (2019).
40 Luo, Z. et al. Reactant friendly hydrogen evolution interface based on di-anionic MoS2 surface. Nat. Commun. 11, 1116 (2020).
41 Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio totalenergy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).
42 Kresse, G. & Hafner, J. Ab initio molecular-dynamics for liquid-metals. Phys. Rev. B 47, 558–561 (1993).
43 Kresse, G. & Hafner, J. Ab-initio molecular-dynamics simulation of the liquidmetal amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994).
44 Kresse, G. & Furthmuller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Phys. Rev. B 6, 15–50 (1996).
45 Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)
46 Monkhorst, H. J. & Pack, J. D. Special points for brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).
47 Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).