[1] Denison MR (2008) Seeking membranes: positive-Strand RNA virus replication complexes. PLoS Biol 6(10): e270.
[2] Amer HM (2018). Bovine-like coronaviruses in domestic and wild ruminants. Anim Health Res Rev 19: 113–124.
[3] Cui J, Li F, Shi ZL (2019). Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol 17: 181-192.
[4] Guarner J (2020). Three emerging coronaviruses in two decades. Am J Clin Pathol. 153: 420-421.
[5] Gorbalenya, A.E., Baker, S.C., Baric, R.S. et al (2020). The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol 5: 536–544. https://doi.org/10.1038/s41564-020-0695-z
[6] Ashour HM, Elkhatib WF, Rahman MM, Elshabrawy HA (2020). Insights into the recent 2019 novel coronavirus (SARS-CoV-2) in light of past human coronavirus outbreaks. Pathogens 9(3): 186. doi:10.3390/pathogens9030186
[7] Zheng J (2020). SARS-CoV-2: an emerging coronavirus that causes a global threat. Int J Biol Sci 16(10): 1678-1685.
[8] Song W, Gui M, Wang X, Xiang Y (2018). Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2. PLoS Pathog 14(8): e1007236.
[9] Spann W, Cavanagh D, Horzineck MC (1988). Coronaviruses: structure and genome expression. J. Gen. Virol. 69: 2939-2952.
[10] Okba, N., Müller, M. A., Li, W., Wang, C., GeurtsvanKessel, C. H., Corman, V. M....Haagmans, B. L. (2020). Severe acute respiratory syndrome coronavirus 2−specific antibody responses in coronavirus disease patients. Emerging Infectious Diseases 26(7), 1478-1488.
[11] Tai W, He L, Zhang X. et al (2020). Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cell Mol Immunol 17: 613–620.
[12] Li F, Li W, Farzan M and Harrison SC (2005). Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science 309: 1864–1868.
[13] Li W, Moore M, Vasilieva N et al (2003). Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426: 450–454.
[14] Shang J, Ye G, Shi K et al (2020). Structural basis of receptor recognition by SARS-CoV-2. Nature 581: 221–224.
[15] Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q (2020). Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science 367: 1444–1448.
[16] Ibrahim M, Saleh NA, Hameed AJ; Elshemey WM, Elsayed AA (2010). Structural and electronic properties of new fullerene derivatives and their possible application as HIV-1 protease inhibitors. Spectrochim. Acta A 75: 702-709.
[17] Ibrahim M, Saleh NA; Elshemey WM, Elsayed AA (2010). Computational notes on fullerene based system as HIV-1 protease inhibitors. Comput Theor Nanosci 7: 224-227.
[18] Ibrahim M, Saleh NA, Elshemey WM, Elsayed AA (2012). Fullerene derivative as anti-HIV protease inhibitor: molecular modeling and QSAR approaches. Mini Rev Med Chem 12(6): 447-451.
[19] Kraevaya OA, Peregudov AS, Troyanov SI, Godovikov I, Fedorova NE, Klimova RR, Sergeeva VA, Kameneva LV, Ershova ES, Martynenko VM, Claes S, Kushch AA, Kostyuk SV, Schols D, Shestakov AF, Troshin PA (2019). Diversion of the Arbuzov reaction: alkylation of C-Cl instead of phosphonic ester formation on the fullerene cage. Org Biomol Chem. 17(30): 7155-7160.
[20] Sergeeva V, Kraevaya O, Ershova E, et al (2019). Antioxidant Properties of Fullerene Derivatives Depend on Their Chemical Structure: A Study of Two Fullerene Derivatives on HELFs. Oxid Med Cell Longev 2019: 4398695.
[21] Aquaro S, Scopelliti F, Pollicita M, & Perno CF (2008). Oxidative stress and HIV infection: Target pathways for novel therapies? Future HIV Therapy 2(4): 327-338.
[22] Ivanov AV, Bartosch B, Isaguliants MG (2017). Oxidative stress in infection and consequent disease. Oxid Med Cell Longev 2017: 3496043.
[23] Delgado-Roche L, Mesta F (2020). Oxidative stress as key player in severe acute respiratory syndrome coronavirus (SARS-CoV) infection. Arch Med Res 51: 384-387.
[24] Nielsen GD, Roursgaard M, Jensen KA, Poulsen SS, Larsen ST (2008). In vivo biology and toxicology of fullerenes and their derivatives. Basic Clin Pharmacol Toxicol 103(3):197-208.
[25] Dennington R, Keith T. and Millam J. GaussView, Version 5, Semichem Inc, Shawnee Mission KS, 2009. http://www.gaussian.com/g_tech/gv5ref/gv5citation.htm.
[26] ElHaes, H., Saleh, N.A., Omar, A., Ibrahim, M. (2014). Molecular spectroscopic study of fulleropyrrolidine carbodithioic acid. J Comput Theor Nanosci 11: 2136-2140.
[27] Hameed AJ, Ibrahim M, ElHaes H (2007). Computational notes on structural, electronic and QSAR properties of [C60] fulleropyrrolidine-1-carbodithioic acid 2; 3 and 4-substituted-benzyl esters. J Mol Struct-THEOCHEM 809: 131-136.
[28] Saleh NA, ElHaes H, Osman O, Mahmoud AA, Ibrahim M (2015). Spectroscopic analyses of modified fulleropyrrolidine derivatives. Open Spectrosc J 9: 1-6.
[29] Hostaš J, Řezáč J and Hobza P (2013). On the performance of the semiempirical quantum mechanical PM6 and PM7 methods for noncovalent interactions. Chem Phys Lett 568: 161-166.
[30] Řezáč J and Hobza P (2011). A halogen-bonding correction for the semiempirical PM6 method. Chem Phys Lett 506 (4-6): 286-289.
[31] Lan J, Ge J, Yu J et al. (2020). Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 581: 215–220.
[32] Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004). UCSF Chimera- a visualization system for exploratory research and analysis. J Comput Chem 25(13): 1605-12.
[33] Morris GM, Huey R., Lindstrom W, Sanner MF, Belew RK, Goodsell DS and Olson AJ (2009). Autodock4 and AutoDockTools4: automated docking with selective receptor flexiblity. J Comput Chem 16: 2785-91.
[34] Trott O, Olson AJ (2010). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2): 455‐461.
[35] Antunes DA, Moll M, Devaurs D, Jackson KR, Lizée G, and Kavraki LE (2017). DINC 2.0: a new protein-peptide docking webserver using an incremental approach. Cancer Res 77: e55–57.
[36] Du X, Li Y, Xia Y-L, Ai S-M, Liang J, Sang P, Ji X-L, Liu S-Q (2016). Insights into protein–ligand interactions: Mechanisms, models, and methods. Int J Mol Sci 17: 144.
[37] Salentin S, Schreiber S, Haupt VJ, Adasme MF, Schroeder M (2015). PLIP: fully automated protein-ligand interaction profiler. Nucleic Acids Res. 43(W1): W443‐W447. doi:10.1093/nar/gkv315
[38] Hui KPY, Cheung M-C, Perera RAPM, Ng K-C et al. (2020). Tropism, replication competence, and innate immune responses of the coronavirus SARS-CoV-2 in human respiratory tract and conjunctiva: an analysis in ex-vivo and in-vitro cultures. Lancet Respir Med S2213-2600(20)30193-4.
[39] Cao Y, Li L, Feng Z et al (2020).Comparative genetic analysis of the novel coronavirus (2019-nCoV/SARS-CoV-2) receptor ACE2 in different populations. Cell Discov 6: 11.