1. Andersson, M. & Iwasa, Y. Sexual selection. Trends Ecol Evol 11, 53–58 (1996).
2. Piersma, T. & Van Gils, J. A. The Flexible Phenotype: A Body-Centred Integration of Ecology, Physiology, and Behaviour. (Oxford university press, Oxford, 2010).
3. Draghi, J. Phenotypic variability can promote the evolution of adaptive plasticity by reducing the stringency of natural selection. J of Evolutionary Biology 32, 1274–1289 (2019).
4. Pigliucci, M. Phenotypic Plasticity: Beyond Nature and Nurture. (Johns Hopkins University Press, 2001).
5. West-Eberhard, M. J. Developmental Plasticity and Evolution. (Oxford University Press, Oxford, 2003).
6. Johnstone, R. A. Sexual selection, honest advertisement and the handicap principle: reviewing the evidence. Biological Reviews 70, 1–65 (1995).
7. Bonduriansky, R. The Evolution of Condition‐Dependent Sexual Dimorphism. The American Naturalist 169, 9–19 (2007).
8. Gautier, P. et al. The Presence of Females Modulates the Expression of a Carotenoid-Based Sexual Signal. Behavioral Ecology and Sociobiology 62, 1159–1166 (2008).
9. Carranza, J. et al. Social environment modulates investment in sex trait versus lifespan: red deer produce bigger antlers when facing more rivalry. Sci Rep 10, 9234 (2020).
10. Schlichting, C. & Pigliucci, M. Phenotypic Evolution: A Reaction Norm Perspective. (Sinauer, 1998).
11. Aubin-Horth, N. & Renn, S. C. P. Genomic reaction norms: using integrative biology to understand molecular mechanisms of phenotypic plasticity. Mol Ecol 18, 3763–3780 (2009).
12. Lafuente, E. & Beldade, P. Genomics of Developmental Plasticity in Animals. Front Genet 10, 720 (2019).
13. Chevin, L.-M., Leung, C., Le Rouzic, A. & Uller, T. Using phenotypic plasticity to understand the structure and evolution of the genotype–phenotype map. Genetica 150, 209–221 (2022).
14. Smith, J. M. Evolution and the Theory of Games. (Cambridge University Press, 1982). doi:10.1017/CBO9780511806292.
15. Carranza, J., Alvarez, F. & Redondo, T. Territoriality as a mating strategy in red deer. Animal Behaviour 40, 79–88 (1990).
16. Carranza, J., Fernandez-Llario, P. & Gomendio, M. Correlates of Territoriality in Rutting Red Deer. Ethology 102, 793–805 (1996).
17. Carranza, J. & Valencia, J. Red deer females collect on male clumps at mating areas. Behavioral Ecology 10, 525–532 (1999).
18. Clutton-Brock, T. H., Guinness, F. E., Albon, S. D. & Barrett, P. Red Deer : Behavior and Ecology of Two Sexes / T.H. Clutton-Brock, F.E. Guinness, S.D. Albon ; with Original Drawings by Priscilla Barrett. (Edinburgh University Press, Edinburgh, 1982).
19. de la Peña, E., Martín, J. & Carranza, J. The intensity of male-male competition may affect chemical scent constituents in the dark ventral patch of male Iberian red deer. PLOS ONE 14, e0221980 (2019).
20. de La Peña, E., Martín, J., Barja, I. & Carranza, J. Testosterone and the dark ventral patch of male red deer: the role of the social environment. Sci Nat 107, 18 (2020).
21. de la Peña, E., Pérez-González, J., Martín, J., Vedel, G. & Carranza, J. The dark-ventral-patch of male red deer, a sexual signal that conveys the degree of involvement in rutting behavior. BMC Zoology 6, 18 (2021).
22. Carranza, J. et al. The dark ventral patch: A bimodal flexible trait related to male competition in red deer. PLoS ONE 15, e0241374 (2020).
23. Galván, I. et al. Unprecedented high catecholamine production causing hair pigmentation after urinary excretion in red deer. Cell Mol Life Sci 76, 397–404 (2019).
24. Sabban, E. L. & Kvetňanský, R. Stress-triggered activation of gene expression in catecholaminergic systems: dynamics of transcriptional events. Trends in Neurosciences 24, 91–98 (2001).
25. Cole, S. W. Social regulation of human gene expression. Curr Dir Psychol Sci 18, 132–137 (2009).
26. Pérez-González, J. & Carranza, J. Female-biased dispersal under conditions of low male mating competition in a polygynous mammal. Mol Ecol 18, 4617–4630 (2009).
27. Torres-Porras, J. The tragedy of the commons: unsustainable population structure of Iberian red deer in hunting estates. European Journal of Wildlife Research 60, 351–357 (2014).
28. Carranza, J., Alarcos, S., Sánchez-Prieto, C. B., Valencia, J. & Mateos, C. Disposable-soma senescence mediated by sexual selection in an ungulate. Nature 432, 215–218 (2004).
29. Mitchell, B. Growth Layers in Dental Cement for Determining the Age of Red Deer (Cervus elaphus L.). The Journal of Animal Ecology 36, 279 (1967).
30. Prieto-Álamo, M.-J., Cabrera-Luque, J.-M. & Pueyo, C. Absolute Quantitation of Normal and ROS-Induced Patterns of Gene Expression: An In Vivo Real-Time PCR Study in Mice. gene expr 11, 23–34 (2003).
31. Kobayashi, K. et al. Structure of the Human Tyrosine Hydroxylase Gene: Alternative Splicing from a Single Gene Accounts for Generation of Four mRNA Types1. The Journal of Biochemistry 103, 907–912 (1988).
32. Svec, D., Tichopad, A., Novosadova, V., Pfaffl, M. W. & Kubista, M. How good is a PCR efficiency estimate: Recommendations for precise and robust qPCR efficiency assessments. Biomol Detect Quantif 3, 9–16 (2015).
33. Jurado, J., Prieto-Álamo, M.-J., Madrid-Rísquez, J. & Pueyo, C. Absolute Gene Expression Patterns of Thioredoxin and Glutaredoxin Redox Systems in Mouse. Journal of Biological Chemistry 278, 45546–45554 (2003).
34. Broggini, C., Abril, N., Carranza, J. & Membrillo, A. Evaluation of candidate reference genes for quantitative real-time PCR normalization in blood from red deer developing antlers. Sci Rep 12, 16264 (2022).
35. Bustin, S. A. et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55, 611–622 (2009).
36. Hellemans, J. & Vandesompele, J. Selection of Reliable Reference Genes for RT-qPCR Analysis. in Quantitative Real-Time PCR (eds. Biassoni, R. & Raso, A.) vol. 1160 19–26 (Springer New York, New York, NY, 2014).
37. Morales-Prieto, N., Ruiz-Laguna, J., Sheehan, D. & Abril, N. Transcriptome signatures of p,p´-DDE-induced liver damage in Mus spretus mice. Environmental Pollution 238, 150–167 (2018).
38. Schroeder, A., Mueller, O., Stocker, S., Salowsky, R., Leiber, M., Gassmann, M., Lightfoot, S., Menzel, W., Granzow, M. & Ragg, T. The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC Molecular Biol 7, 3 (2006).
39. R Core Team. R: A language and environment for statistical computing. V.4.2.1. Vienna, Austria: R Foundation for Statistical Computing (2021).
40. Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Soft. 67, (2015).
41. Lüdecke, D. ggeffects: Tidy Data Frames of Marginal Effects from Regression Models. JOSS 3, 772 (2018).
42. Fox, J., & Weisberg, S. An R companion to applied regression. Sage publications (2018).
43. Alin, A. Multicollinearity: Multicollinearity. WIREs Comp Stat 2, 370–374 (2010).
44. Naimi, B., Hamm, N. A. S., Groen, T. A., Skidmore, A. K. & Toxopeus, A. G. Where is positional uncertainty a problem for species distribution modelling? Ecography 37, 191–203 (2014).
45. Lustberg, D. J. et al. Norepinephrine and dopamine contribute to distinct repetitive behaviors induced by novel odorant stress in male and female mice. Hormones and Behavior 144, 105205 (2022).
46. Daubner, S. C., Le, T. & Wang, S. Tyrosine hydroxylase and regulation of dopamine synthesis. Archives of Biochemistry and Biophysics 508, 1–12 (2011).
47. Cousins, D. A., Butts, K. & Young, A. H. The role of dopamine in bipolar disorder. Bipolar Disorders 11, 787–806 (2009).
48. Koob, G. F. & Volkow, N. D. Neurocircuitry of Addiction. Neuropsychopharmacol 35, 217–238 (2010).
49. Fisher, E. & Feng, J. RNA splicing regulators play critical roles in neurogenesis. WIREs RNA 13, e1728 (2022).
50. Nagatsu, T. Catecholamines and Parkinson’s disease: tyrosine hydroxylase (TH) over tetrahydrobiopterin (BH4) and GTP cyclohydrolase I (GCH1) to cytokines, neuromelanin, and gene therapy: a historical overview. J Neural Transm (2023) doi:10.1007/s00702-023-02673-y.
51. Fitzpatrick, P. F. The aromatic amino acid hydroxylases: Structures, catalysis, and regulation of phenylalanine hydroxylase, tyrosine hydroxylase, and tryptophan hydroxylase. Archives of Biochemistry and Biophysics 735, 109518 (2023).
52. Kramer, A. C., Mirto, A. J., Austin, K. J., Roselli, C. E. & Alexander, B. M. Tyrosine hydroxylase in the ventral tegmental area of rams with high or low libido—A role for dopamine. Animal Reproduction Science 187, 152–158 (2017).
53. Eswine, S. L., Pontinen, J. K. & Heimovics, S. A. Competitive ability during mate competition relates to unique patterns of dopamine-related gene expression in the social decision-making network of male zebra finches. Neuroscience Letters 706, 30–35 (2019).
54. Filipenko, M. L., Alekseyenko, O. V., Beilina, A. G., Kamynina, T. P. & Kudryavtseva, N. N. Increase of tyrosine hydroxylase and dopamine transporter mRNA levels in ventral tegmental area of male mice under influence of repeated aggression experience. Molecular Brain Research 96, 77–81 (2001).
55. Skjevik, Å. A. et al. The N-Terminal Sequence of Tyrosine Hydroxylase Is a Conformationally Versatile Motif That Binds 14-3-3 Proteins and Membranes. Journal of Molecular Biology 426, 150–168 (2014).
56. Eigerman, A. R. & Mangiamele, L. A. Mechanisms of multimodality: androgenic hormones and adaptive flexibility in multimodal displays. Animal Behaviour 184, 149–156 (2022).
57. Melis, M. R., Sanna, F. & Argiolas, A. Dopamine, Erectile Function and Male Sexual Behavior from the Past to the Present: A Review. Brain Sciences 12, 826 (2022).
58. Martín, J., Carranza, J., López, P., Alarcos, S. & Pérez-González, J. A new sexual signal in rutting male red deer: Age related chemical scent constituents in the belly black spot. Mammalian Biology 79, 362–368 (2014).
59. Buccitelli, C. & Selbach, M. mRNAs, proteins and the emerging principles of gene expression control. Nat Rev Genet 21, 630–644 (2020).
60. Rittschof, C. C. & Hughes, K. A. Advancing behavioural genomics by considering timescale. Nat Commun 9, 489 (2018).
61. Mysterud, A., Bonenfant, C., Loe, L. E., Langvatn, R., Yoccoz, N. G. & Stenseth, N. C. Age‐specific feeding cessation in male red deer during rut. Journal of Zoology 275, 407–412 (2008).
62. Yoccoz, N. G., Mysterud, A., Langvatn, R. & Stenseth, N. Chr. Age– and density–dependent reproductive effort in male red deer. Proc. R. Soc. Lond. B 269, 1523–1528 (2002).
63. Apollonio, M., Merli, E., Chirichella, R., Pokorny, B., Alagić, A., Flajšman, K. & Stephens, P. A. Capital-Income Breeding in Male Ungulates: Causes and Consequences of Strategy Differences Among Species. Front. Ecol. Evol. 8, 521767 (2020).
64. Vicente, J., Pérez-Rodríguez, L. & Gortazar, C. Sex, age, spleen size, and kidney fat of red deer relative to infection intensities of the lungworm Elaphostrongylus cervi. Naturwissenschaften 94, 581 (2007).
65. Hartmann, C., Radermacher, P., Wepler, M. & Nußbaum, B. Non-Hemodynamic Effects of Catecholamines. Shock 48, 390–400 (2017).
66. De La Peña, E., Martín, J., Barja, I., Pérez‐Caballero, R., Acosta, I. & Carranza, J. Immune challenge of mating effort: steroid hormone profile, dark ventral patch and parasite burden in relation to intrasexual competition in male Iberian red deer. Integr. Zool. 15, 262–275 (2020).
67. Thoppil, J., Mehta, P., Bartels, B., Sharma, D. & Farrar, J. D. Impact of norepinephrine on immunity and oxidative metabolism in sepsis. Front. Immunol. 14, 1271098 (2023).