[1] WHO. World Health Organization Novel Coronavirus Disease (2019-nCoV) Situation. [June 26, 2020]; Available from: https://www.who.int/20200121-sitrep-1-2019-ncov.pdf.
[2] Bedford J, Enria D, Giesecke J, Heymann DL, Ihekweazu C, Kobinger G et al. COVID-19: towards controlling of a pandemic. Lancet 2020;395(10229):1015–8. https://doi.org/10.1016/S0140-6736(20)30673-5.
[3] WHO. Coronavirus disease 2019 (COVID-19) situation report. [June 26, 2020]; Available from: https://www.who.int/20200626-covid-19-sitrep-158.pdf.
[4] NCDC. COVID-19. [June 27, 2020]; Available from: http://covid19.ncdc.gov.ng.
[5] Ayinde K, Lukman AF, Rauf RI, Alabi OO, Okon CE, Ayinde OE. Modeling Nigerian Covid-19 cases: A comparative analysis of models and estimators. Chaos Solitons Fractals 2020;138:109911. https://doi.org/10.1016/j.chaos.2020.109911.
[6] Adegboye OA, Adekunle AI, Gayawan E. Early Transmission Dynamics of Novel Coronavirus (COVID-19) in Nigeria. Int J Environ Res Public Health 2020;17(9). https://doi.org/10.3390/ijerph17093054.
[7] Oramfe. COVID-19 Infected and Death. Nigeria; 2020.
[8] Cori A, Ferguson NM, Fraser C, Cauchemez S. A new framework and software to estimate time-varying reproduction numbers during epidemics. Am J Epidemiol 2013;178(9):1505–12. https://doi.org/10.1093/aje/kwt133.
[9] Kamvar ZN, Cai J, Pulliam JRC, Schumacher J, Jombart T. Epidemic curves made easy using the R package incidence. F1000Res 2019;8:139. https://doi.org/10.12688/f1000research.18002.1.
[10] Dietz K. The estimation of the basic reproduction number for infectious diseases. Stat Methods Med Res 1993;2(1):23–41. https://doi.org/10.1177/096228029300200103.
[11] Bettencourt LMA, Ribeiro RM. Real time bayesian estimation of the epidemic potential of emerging infectious diseases. PLoS ONE 2008;3(5):e2185. https://doi.org/10.1371/journal.pone.0002185.
[12] Obadia T, Haneef R, Boëlle P-Y. The R0 package: a toolbox to estimate reproduction numbers for epidemic outbreaks. BMC Med Inform Decis Mak 2012;12:147. https://doi.org/10.1186/1472-6947-12-147.
[13] Wallinga J, Teunis P. Different epidemic curves for severe acute respiratory syndrome reveal similar impacts of control measures. Am J Epidemiol 2004;160(6):509–16. https://doi.org/10.1093/aje/kwh255.
[14] Boëlle PY, Bernillon P, Desenclos JC. A preliminary estimation of the reproduction ratio for new influenza A(H1N1) from the outbreak in Mexico, March-April 2009. Euro Surveill 2009;14(19). https://doi.org/10.2807/ese.14.19.19205-en.
[15] Wallinga J, Lipsitch M. How generation intervals shape the relationship between growth rates and reproductive numbers. Proc Biol Sci 2007;274(1609):599–604. https://doi.org/10.1098/rspb.2006.3754.
[16] Svensson A. A note on generation times in epidemic models. Math Biosci 2007;208(1):300–11. https://doi.org/10.1016/j.mbs.2006.10.010.
[17] White LF, Pagano M. A likelihood-based method for real-time estimation of the serial interval and reproductive number of an epidemic. Stat Med 2008;27(16):2999–3016. https://doi.org/10.1002/sim.3136.
[18] Thompson RN, Stockwin JE, van Gaalen RD, Polonsky JA, Kamvar ZN, Demarsh PA et al. Improved inference of time-varying reproduction numbers during infectious disease outbreaks. Epidemics 2019;29:100356. https://doi.org/10.1016/j.epidem.2019.100356.
[19] Selvadurai APS. Poisson’s equation. In: Selvadurai APS, editor. Partial Differential Equations in Mechanics 1: Fundamentals, Laplace's Equation, Diffusion Equation, Wave Equation. Berlin, Heidelberg: Springer Berlin Heidelberg; 2000, p. 503–647.
[20] Moriasi D, Arnold J, van Liew M, Bingner R, Harmel R, Veith T. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE 2007;50:885.
[21] Adeyeri OE, Laux P, Lawin AE, Oyekan KSA. Multiple bias-correction of dynamically downscaled CMIP5 climate models temperature projection: a case study of the transboundary Komadugu-Yobe river basin, Lake Chad region, West Africa. SN Appl. Sci. 2020;2(7). https://doi.org/10.1007/s42452-020-3009-4.
[22] Fine P, Eames K, Heymann DL. "Herd immunity": a rough guide. Clin Infect Dis 2011;52(7):911–6. https://doi.org/10.1093/cid/cir007.
[23] Cauchemez S, Bhattarai A, Marchbanks TL, Fagan RP, Ostroff S, Ferguson NM et al. Role of social networks in shaping disease transmission during a community outbreak of 2009 H1N1 pandemic influenza. Proceedings of the National Academy of Sciences 2011;108(7):2825–30. https://doi.org/10.1073/pnas.1008895108.
[24] Nishiura H, Castillo-Chavez C, Safan M, Chowell G. Transmission potential of the new influenza A(H1N1) virus and its age-specificity in Japan. Euro Surveill 2009;14(22). https://doi.org/10.2807/ese.14.22.19227-en.
[25] Cauchemez S, Boelle P-Y, Donnelly CA, Ferguson NM, Thomas G, Leung GM et al. Real-time estimates in early detection of SARS. Emerging Infect Dis 2006;12(1):110–3. https://doi.org/10.3201/eid1201.050593.
[26] Adeyeri OE, Laux P, Lawin AE, Ige SO, Kunstmann H. Analysis of hydrometeorological variables over the transboundary Komadugu-Yobe basin, West Africa. Journal of Water and Climate Change 2019. https://doi.org/10.2166/wcc.2019.283.
[27] Hayward DF, Oguntoyinbo JS. Climatology of West Africa. ROUTLEDGE; 2019.