1. Doyle LW, Spittle A, Anderson PJ, Cheong JLY. School-aged neurodevelopmental outcomes for children born extremely preterm. Arch Dis Child. 2021;106(9):834–8.
2. Marlow N, Ni Y, Lancaster R, Suonpera E, Bernardi M, Fahy A, et al. No change in neurodevelopment at 11 years after extremely preterm birth. Arch Dis Child-Fetal Neonatal Ed. 2021;106(4):418–24.
3. van Baar AL, van Wassenaer AG, Briët JM, Dekker FW, Kok JH. Very Preterm Birth is Associated with Disabilities in Multiple Developmental Domains. J Pediatr Psychol. 2005 Apr 1;30(3):247–55.
4. Woodward LJ, Moor S, Hood KM, Champion PR, Foster-Cohen S, Inder TE, et al. Very preterm children show impairments across multiple neurodevelopmental domains by age 4 years. Arch Dis Child-Fetal Neonatal Ed. 2009;94(5):339–44.
5. Luu TM, Ment LR, Schneider KC, Katz KH, Allan WC, Vohr BR. Lasting Effects of Preterm Birth and Neonatal Brain Hemorrhage at 12 Years of Age. Pediatrics. 2009 Mar 1;123(3):1037–44.
6. Vandormael C, Schoenhals L, Hüppi PS, Filippa M, Borradori Tolsa C. Language in Preterm Born Children: Atypical Development and Effects of Early Interventions on Neuroplasticity. Neural Plast. 2019;2019:6873270.
7. van Noort-van der Spek IL, Franken MCJP, Weisglas-Kuperus N. Language Functions in Preterm-Born Children: A Systematic Review and Meta-analysis. Pediatrics. 2012 Apr 1;129(4):745–54.
8. Pérez-Pereira M. Prevalence of Language Delay among Healthy Preterm Children, Language Outcomes and Predictive Factors. Child Basel Switz. 2021 Apr 6;8(4):282.
9. Luu TM, Vohr BR, Allan W, Schneider KC, Ment LR. Evidence for Catch-up in Cognition and Receptive Vocabulary Among Adolescents Born Very Preterm. Pediatrics. 2011 Aug 1;128(2):313–22.
10. Vohr B. Speech and language outcomes of very preterm infants. Semin Fetal Neonatal Med. 2014 Apr 1;19(2):78–83.
11. Kunnari S, Yliherva A, Paavola L, Peltoniemi OM. Expressive Language Skills in Finnish Two-Year-Old Extremely- and Very-Low-Birth-Weight Preterm Children. Folia Phoniatr Logop. 2012;64(1):5–11.
12. Sanchez K, Spittle AJ, Boyce JO, Leembruggen L, Mantelos A, Mills S, et al. Conversational Language in 3-Year-Old Children Born Very Preterm and at Term. J Speech Lang Hear Res JSLHR. 2020 Jan;63(1):206–15.
13. Guarini A, Sansavini A, Fabbri C, Savini S, Alessandroni R, Faldella G, et al. Long-term effects of preterm birth on language and literacy at eight years. J Child Lang. 2010;37(4):865–85.
14. Barre N, Morgan A, Doyle LW, Anderson PJ. Language abilities in children who were very preterm and/or very low birth weight: a meta-analysis. J Pediatr. 2011 May;158(5):766-774.e1.
15. Omizzolo C, Scratch SE, Stargatt R, Kidokoro H, Thompson DK, Lee KJ, et al. Neonatal brain abnormalities and memory and learning outcomes at 7 years in children born very preterm. Memory. 2014 Aug 18;22(6):605–15.
16. Lee ES a, Yeatman JD b, Luna B c, Feldman HM a. Specific language and reading skills in school-aged children and adolescents are associated with prematurity after controlling for IQ. Neuropsychologia. 2011 Apr;49(5):906–13.
17. Gobbo C, Chi M. How knowledge is structured and used by expert and novice children. Cogn Dev. 1986;1(3):221–37.
18. Biemiller A, Slonim N. Estimating root word vocabulary growth in normative and advantaged populations: Evidence for a common sequence of vocabulary acquisition. J Educ Psychol. 2001;93(3):498.
19. Tulving E. Episodic and semantic memory. In: Organization of memory. Oxford, England: Academic Press; 1972. p. xiii, 423–xiii, 423.
20. Markovits H, Fleury ML, Quinn S, Venet M. The development of conditional reasoning and the structure of semantic memory. Child Dev. 1998;69(3):742–55.
21. Vales C, States SL, Fisher AV. Experience-Driven Semantic Differentiation: Effects of a Naturalistic Experience on Within- and Across-Domain Differentiation in Children. Child Dev. 2020;91(3):733–42.
22. Siew CSQ, Wulff DU, Beckage NM, Kenett YN. Cognitive Network Science: A Review of Research on Cognition through the Lens of Network Representations, Processes, and Dynamics. Complexity. 2019 Jun 17;2019:e2108423.
23. Goñi J, Martincorena I, Corominas-Murtra B, Arrondo G, Ardanza-Trevijano S, Villoslada P. Switcher-random-walks: A cognitive-inspired mechanism for network exploration. Int J Bifurc Chaos. 2010;20(03):913–22.
24. Denervaud S, Christensen AP, Kenett YN, Beaty RE. Education shapes the structure of semantic memory and impacts creative thinking. Npj Sci Learn. 2021 Dec 9;6(1):1–7.
25. Schneider J, Kober T, Bickle Graz M, Meuli R, Hüppi PS, Hagmann P, et al. Evolution of T1 Relaxation, ADC, and Fractional Anisotropy during Early Brain Maturation: A Serial Imaging Study on Preterm Infants. Am J Neuroradiol. 2016 Jan;37(1):155–62.
26. Korkman M, Kirk U, Kemp S. NEPSY, bilan neuropsychologique de l’enfant [adaptation française 2003]. Montreuil Ed ECPA. 1997;
27. Barker JE, Semenov AD, Michaelson L, Provan LS, Snyder HR, Munakata Y. Less-structured time in children’s daily lives predicts self-directed executive functioning. Front Psychol [Internet]. 2014 [cited 2022 May 24];5. Available from: https://www.frontiersin.org/article/10.3389/fpsyg.2014.00593
28. Largo RH, Pfister D, Molinari L, Kundu S, Lipp A, Due G. Significance of prenatal, perinatal and postnatal factors in the development of AGA preterm infants at five to seven years. Dev Med Child Neurol. 1989;31(4):440–56.
29. Wechsler D. WISC-V: Manuel technique et d’interprétation. PsychCorp Ed Don Mills Pearson. 2016;
30. Raven J, Raven JC, Court JH. Manual for Raven’s progressive matrices and vocabulary scales. Section 1: General overview. Harcourt Assessment. 2003;
31. Christensen AP, Kenett YN. Semantic network analysis (SemNA): A tutorial on preprocessing, estimating, and analyzing semantic networks. Psychol Methods. 2021;
32. Christensen AP. NetworkToolbox: Methods and Measures for Brain, Cognitive, and Psychometric Network Analysis in R. R J. 2018;10(2):422–39.
33. Wickham H, Bryan J. readxl: Read excel files. R Package Version. 2019;1(1):785.
34. Handcock MS, Fellows IE, Gile KJ. RDS: Respondent-driven sampling. Version 07-7. 2016;
35. Christensen AP. SemNetDictionaries: Dictionaries for the’SemNetCleaner’package. 2019.
36. Christensen AP. SemNetCleaner: An automated cleaning tool for semantic and linguistic data. Package Version. 2019;1(0).
37. Kenett YN, Wechsler-Kashi D, Kenett DY, Schwartz RG, Ben-Jacob E, Faust M. Semantic organization in children with cochlear implants: Computational analysis of verbal fluency. Front Psychol. 2013;4:543.
38. Massara GP, Di Matteo T, Aste T. Network Filtering for Big Data: Triangulated Maximally Filtered Graph [Internet]. arXiv; 2015 [cited 2022 Sep 5]. Available from: http://arxiv.org/abs/1505.02445
39. Borodkin K, Kenett YN, Faust M, Mashal N. When pumpkin is closer to onion than to squash: The structure of the second language lexicon. Cognition. 2016;156:60–70.
40. Christensen AP, Kenett YN, Aste T, Silvia PJ, Kwapil TR. Network structure of the Wisconsin Schizotypy Scales–Short Forms: Examining psychometric network filtering approaches. Behav Res Methods. 2018 Dec 1;50(6):2531–50.
41. Christensen AP, Kenett YN, Cotter KN, Beaty RE, Silvia PJ. Remotely Close Associations: Openness to Experience and Semantic Memory Structure. Eur J Personal. 2018 Jul 1;32(4):480–92.
42. Benedek M, Kenett YN, Umdasch K, Anaki D, Faust M, Neubauer AC. How semantic memory structure and intelligence contribute to creative thought: a network science approach. Think Reason. 2017 Apr 3;23(2):158–83.
43. Marchman VA, Ashland MD, Loi EC, Adams KA, Fernald A, Feldman HM. Predictors of early vocabulary growth in children born preterm and full term: A study of processing speed and medical complications. Child Neuropsychol. 2019 Oct 3;25(7):943–63.
44. Rose SA, Feldman JF, Jankowski JJ. Modeling a cascade of effects: The role of speed and executive functioning in preterm/full-term differences in academic achievement. Dev Sci. 2011;14(5):1161–75.
45. Brydges CR, Landes JK, Reid CL, Campbell C, French N, Anderson M. Cognitive outcomes in children and adolescents born very preterm: a meta-analysis. Dev Med Child Neurol. 2018;60(5):452–68.
46. Anderson PJ. Neuropsychological outcomes of children born very preterm. Semin Fetal Neonatal Med. 2014 Apr 1;19(2):90–6.
47. Nelson DL, Bennett DJ, Gee NR, Schreiber TA, McKinney VM. Implicit memory: Effects of network size and interconnectivity on cued recall. J Exp Psychol Learn Mem Cogn. 19931201;19(4):747.
48. Bröring T, Oostrom KJ, Lafeber HN, Jansma EP, Oosterlaan J. Sensory modulation in preterm children: Theoretical perspective and systematic review. Key A, editor. PLOS ONE. 2017 Feb 9;12(2):e0170828.
49. Bröring T, Königs M, Oostrom KJ, Lafeber HN, Brugman A, Oosterlaan J. Sensory processing difficulties in school-age children born very preterm: An exploratory study. Early Hum Dev. 2018 Feb 1;117:22–31.
50. Wallace MT, Woynaroski TG, Stevenson RA. Multisensory integration as a window into orderly and disrupted cognition and communication. Annu Rev Psychol. 2020;71:193–219.
51. Quak M, London RE, Talsma D. A multisensory perspective of working memory. Front Hum Neurosci [Internet]. 2015 [cited 2023 May 30];9. Available from: https://www.frontiersin.org/articles/10.3389/fnhum.2015.00197
52. Marshall C. Montessori education: a review of the evidence base. Npj Sci Learn. 2017 Oct 27;2(1):1–9.
53. Ardila A, Ostrosky-Solís F, Bernal B. Cognitive testing toward the future: The example of Semantic Verbal Fluency (ANIMALS). Int J Psychol. 2006;41(5):324–32.
54. Dubossarsky H, De Deyne S, Hills T. Association networks across the lifespan: the large-scale structure of free association networks, evidence for U-shaped developmental changes and semantic saturation. 2014. S38 p.