[1] Teras LR, DeSantis CE, Cerhan JR, Morton LM, Jemal A, Flowers CR. 2016 US lymphoid malignancy statistics by World Health Organization subtypes. CA Cancer J Clin. 2016. 66(6): 443-459.
[2] Hans CP, Weisenburger DD, Greiner TC, et al. Confirmation of the molecular classification of diffuse large B-cell lymphoma by immunohistochemistry using a tissue microarray. Blood. 2004. 103(1): 275-82.
[3] Xu PP, Fu D, Li JY, et al. Anthracycline dose optimisation in patients with diffuse large B-cell lymphoma: a multicentre, phase 3, randomised, controlled trial. Lancet Haematol. 2019. 6(6): e328-e337.
[4] Li S, Young KH, Medeiros LJ. Diffuse large B-cell lymphoma. Pathology. 2018. 50(1): 74-87.
[5] Bakhshi TJ, Georgel PT. Genetic and epigenetic determinants of diffuse large B-cell lymphoma. Blood Cancer J. 2020. 10(12): 123.
[6] Nielsen SJ, Schneider R, Bauer UM, et al. Rb targets histone H3 methylation and HP1 to promoters. Nature. 2001. 412(6846): 561-5.
[7] Dodge JE, Kang YK, Beppu H, Lei H, Li E. Histone H3-K9 methyltransferase ESET is essential for early development. Mol Cell Biol. 2004. 24(6): 2478-86.
[8] Peters AH, O', Carroll D, et al. Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell. 2001. 107(3): 323-37.
[9] Braig M, Lee S, Loddenkemper C, et al. Oncogene-induced senescence as an initial barrier in lymphoma development. Nature. 2005. 436(7051): 660-5.
[10] Milanovic M, Fan D, Belenki D, et al. Senescence-associated reprogramming promotes cancer stemness. Nature. 2018. 553(7686): 96-100.
[11] Pace L, Goudot C, Zueva E, et al. The epigenetic control of stemness in CD8(+) T cell fate commitment. Science. 2018. 359(6372): 177-186.
[12] Shen JZ, Qiu Z, Wu Q, et al. FBXO44 promotes DNA replication-coupled repetitive element silencing in cancer cells. Cell. 2021. 184(2): 352-369.e23.
[13] Altieri F, Di Stadio CS, Federico A, et al. Epigenetic alterations of gastrokine 1 gene expression in gastric cancer. Oncotarget. 2017. 8(10): 16899-16911.
[14] Chiba T, Saito T, Yuki K, et al. Histone lysine methyltransferase SUV39H1 is a potent target for epigenetic therapy of hepatocellular carcinoma. Int J Cancer. 2015. 136(2): 289-98.
[15] Lu C, Yang D, Klement JD, et al. SUV39H1 Represses the Expression of Cytotoxic T-Lymphocyte Effector Genes to Promote Colon Tumor Immune Evasion. Cancer Immunol Res. 2019. 7(3): 414-427.
[16] Mo W, Liu Q, Lin CC, et al. mTOR Inhibitors Suppress Homologous Recombination Repair and Synergize with PARP Inhibitors via Regulating SUV39H1 in BRCA-Proficient Triple-Negative Breast Cancer. Clin Cancer Res. 2016. 22(7): 1699-712.
[17] Schleich K, Kase J, Dörr JR, et al. H3K9me3-mediated epigenetic regulation of senescence in mice predicts outcome of lymphoma patients. Nat Commun. 2020. 11(1): 3651.
[18] Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017. 45(W1): W98-W102.
[19] Li H, Ning S, Ghandi M, et al. The landscape of cancer cell line metabolism. Nat Med. 2019. 25(5): 850-860.
[20] Ghandi M, Huang FW, Jané-Valbuena J, et al. Next-generation characterization of the Cancer Cell Line Encyclopedia. Nature. 2019. 569(7757): 503-508.
[21] Chandrashekar DS, Bashel B, Balasubramanya S, et al. UALCAN: A Portal for Facilitating Tumor Subgroup Gene Expression and Survival Analyses. Neoplasia. 2017. 19(8): 649-658.
[22] Storz MN, van de Rijn M, Kim YH, Mraz-Gernhard S, Hoppe RT, Kohler S. Gene expression profiles of cutaneous B cell lymphoma. J Invest Dermatol. 2003. 120(5): 865-70.
[23] Compagno M, Lim WK, Grunn A, et al. Mutations of multiple genes cause deregulation of NF-kappaB in diffuse large B-cell lymphoma. Nature. 2009. 459(7247): 717-21.
[24] Djeghloul D, Kuranda K, Kuzniak I, et al. Age-Associated Decrease of the Histone Methyltransferase SUV39H1 in HSC Perturbs Heterochromatin and B Lymphoid Differentiation. Stem Cell Reports. 2016. 6(6): 970-984.
[25] Boonmee A, Benjaskulluecha S, Kueanjinda P, Wongprom B, Pattarakankul T, Palaga T. The chemotherapeutic drug carboplatin affects macrophage responses to LPS and LPS tolerance via epigenetic modifications. Sci Rep. 2021. 11(1): 21574.
[26] Campaner S, Doni M, Verrecchia A, Fagà G, Bianchi L, Amati B. Myc, Cdk2 and cellular senescence: Old players, new game. Cell Cycle. 2010. 9(18): 3655-61.
[27] Park JW, Bae YS. Dephosphorylation of p53 Ser 392 Enhances Trimethylation of Histone H3 Lys 9 via SUV39h1 Stabilization in CK2 Downregulation-Mediated Senescence. Mol Cells. 2019. 42(11): 773-782.
[28] Reimann M, Lee S, Loddenkemper C, et al. Tumor stroma-derived TGF-beta limits myc-driven lymphomagenesis via Suv39h1-dependent senescence. Cancer Cell. 2010. 17(3): 262-72.
[29] Cai L, Ma X, Huang Y, Zou Y, Chen X. Aberrant histone methylation and the effect of Suv39H1 siRNA on gastric carcinoma. Oncol Rep. 2014. 31(6): 2593-600.
[30] Lu C, Klement JD, Yang D, et al. SUV39H1 regulates human colon carcinoma apoptosis and cell cycle to promote tumor growth. Cancer Lett. 2020. 476: 87-96.
[31] Yu T, Wang C, Yang J, Guo Y, Wu Y, Li X. Metformin inhibits SUV39H1-mediated migration of prostate cancer cells. Oncogenesis. 2017. 6(5): e324.
[32] Chu W, Zhang X, Qi L, et al. The EZH2-PHACTR2-AS1-Ribosome Axis induces Genomic Instability and Promotes Growth and Metastasis in Breast Cancer. Cancer Res. 2020. 80(13): 2737-2750.
[33] Liao HF, Lee CC, Hsiao PC, et al. TCH1036, a indeno[1,2-c]quinoline derivative, potentially inhibited the growth of human brain malignant glioma (GBM) 8401 cells via suppression of the expression of Suv39h1 and PARP. Biomed Pharmacother. 2016. 82: 649-59.
[34] Rodrigues C, Pattabiraman C, Vijaykumar A, et al. A SUV39H1-low chromatin state characterises and promotes migratory properties of cervical cancer cells. Exp Cell Res. 2019. 378(2): 206-216.
[35] Iordanskiy S, Van Duyne R, Sampey GC, et al. Therapeutic doses of irradiation activate viral transcription and induce apoptosis in HIV-1 infected cells. Virology. 2015. 485: 1-15.
[36] Dörr JR, Yu Y, Milanovic M, et al. Synthetic lethal metabolic targeting of cellular senescence in cancer therapy. Nature. 2013. 501(7467): 421-5.
[37] Harro CM, Perez-Sanz J, Costich TL, et al. Methyltransferase inhibitors restore SATB1 protective activity against cutaneous T cell lymphoma in mice. J Clin Invest. 2021. 131(3).