Ademe MS, He SP, Pan ZE, et al. Association mapping analysis of fiber yield and quality traits in Upland cotton (Gossypium hirsutum L.). Mol Genet Genomics. 2017; 292: 1267-80. doi: 10.1007/s00438-017-1346-9.
Ali I, Teng ZH, Bai YT, et al. A high density SLAF-SNP genetic map and QTL detection for fibre quality traits in Gossypium hirsutum. BMC Genomics 2018;19(1):879. doi: 10.1186/s12864-018-5294-5.
Andersen JR, Schrag TA, Melchinger AE, et al. Validation of Dwarf8 polymorphisms associated with flowering time in elite European inbred lines of maize ( Zea mays L.). Theor Appl Genet. 2005;111(2):206-17. doi: 10.1007/s00122-005-1996-6.
Anderson JA. Marker-assisted selection for Fusarium head blight resistance in wheat. Int J Food Microbiol. 2007;119(1-2):51-3. doi: 10.1016/j.ijfoodmicro.
Avni R, Oren L, Shabtay G, et al. Genome based meta-QTL analysis of grain weight in tetraploid wheat identifies rare alleles of GRF4 associated with larger grains. Genes (Basel). 2018;9(12):636. doi: 10.3390/genes9120636.
Cai CP, Zhu GZ, Zhang TZ, et al. High-density 80 K SNP array is a powerful tool for genotyping G. hirsutum accessions and genome analysis. BMC Genomics. 2017;18(1):654. doi: 10.1186/s12864-017-4062-2.
Chandnani R, Kim C, Guo H, et al. Genetic analysis of gossypium fiber quality traits in reciprocal advanced backcross populations. Plant Genome. 2018;11(1):10.3835. doi: 10.3835/plantgenome2017.06.0057.
Chen L, Bian JM, Shi HL, et al. Genetic analysis for the grain number heterosis of a super-hybrid rice WFYT025 combination using RNA-Seq. Rice (N Y). 2018;11(1):37. doi: 10.1186/s12284-018-0229-y.
Cobb JN, Biswas PS, Platten JD. Back to the future: revisiting MAS as a tool for modern plant breeding. Theor Appl Genet. 2019;132(3):647-67. doi: 10.1007/s00122-018-3266-4.
Cui ZH, Xia AA, Zhang A, et al. Linkage mapping combined with association analysis reveals QTL and candidate genes for three husk traits in maize. Theor Appl Genet. 2018;131(10):2131-44. doi: 10.1007/s00122-018-3142-2.
Dai XX, You CJ, Chen GX, et al. OsBC1L4 encodes a COBRA-like protein that affects cellulose synthesis in rice. Plant Mol Biol. 2011;75(4-5):333-45. doi: 10.1007/s11103-011-9730-z.
Diouf L, Magwanga RO, Gong WF, et al. QTL mapping of fiber quality and yield-related traits in an intra-specific upland cotton using genotype by sequencing (GBS). Int J Mol Sci. 2018;19(2):441. doi: 10.3390/ijms19020441.
Fang L, Tian RP, Chen JD, et al. Transcriptomic analysis of fiber strength in upland cotton chromosome introgression lines carrying different Gossypium barbadense chromosomal segments. PLoS One. 2014;9(4):e94642. doi: 10.1371/journal.pone.0094642.
Fang L, Wang Q, Hu Y, et al. Genomic analyses in cotton identify signatures of selection and loci associated with fiber quality and yield traits. Nat Genet. 2017;49(7):1089-98. doi: 10.1038/ng.3887.
Gapare WJ, Conaty W, Zhu QH, et al. Genome-wide association study of yield components and fibre quality traits in a cotton germplasm diversity panel. Euphytica, 2017; 213: 66.doi: 10.1007/s10681-017-1855-y.
Goffinet B, Gerber S. Quantitative trait loci: a meta-analysis. Genetics, 2000; 155: 463-73.
Guo BH, Sleper DA, Lu P, et al. QTLs associated with resistance to soybean cyst nematode in soybean: meta-analysis of QTL locations. Crop Sci, 2006a; 46(2): 595-602. doi: 10.1007/s00122-005-0031-2.
Guo WZ, Ma GJ, Zhu YC, et al. Molecular tagging and mapping of quantitative trait loci for lint percentage and morphological marker genes in upland cotton. J Integr Plant Biol. 2006b; 48, 320-6.
Guo X, Guo YP, Ma J, et al. Mapping heterotic loci for yield and agronomic traits using chromosome segment introgression lines in cotton. J Integr Plant Biol. 2013;55(8):759-74. doi: 10.1111/jipb.12054.
Han LB, Li YB, Wang HY, et al. The dual functions of WLIM1a in cell elongation and secondary wall formation in developing cotton fibers. Plant Cell. 2013;25(11):4421-38. doi: 10.1105/tpc.113.116970.
Handi SS, Katageri IS, Adiger S, et al. Association mapping for seed cotton yield, yield components and fibre quality traits in upland cotton (Gossypium hirsutum L.) genotypes. Plant Breeding. 2017; 136(6): 958-68.
Huang C, Nie XH, Shen C, et al. Population structure and genetic basis of the agronomic traits of upland cotton in China revealed by a genome-wide association study using high-density SNPs. Plant Biotechnol J. 2017;15(11):1374-86. doi: 10.1111/pbi.12722.
Huang YQ, Wang J, Zhang LD, et al. A cotton annexin protein anxGb6 regulates fiber elongation through its interaction with actin 1. PLoS One. 2013;8(6):e66160. doi: 10.1371/journal.pone.0066160.
Ijaz B, Zhao N, Kong J, et al. Fiber quality improvement in upland cotton (Gossypium hirsutum L.): quantitative trait loci mapping and marker assisted selection application. Front Plant Sci. 2019;10:1585. doi: 10.3389/fpls.2019.01585.
Islam MS, Thyssen GN, Jenkins JN, et al. A MAGIC population-based genome-wide association study reveals functional association of GhRBB1_A07 gene with superior fiber quality in cotton. BMC Genomics. 2016;17(1):903. doi: 10.1186/s12864-016-3249-2.
Jia XY, Wang HT, Pang CY, et al. QTL delineation for five fiber quality traits based on an intra-specific Gossypium hirsutum L. recombinant inbred line population. Mol Genet Genomics. 2018;293(4):831-43. doi: 10.1007/s00438-018-1424-7.
Keerio AA, Shen C, Nie YC, et al. 2018. QTL mapping for fiber quality and yield traits based on introgression lines derived from Gossypium hirsutum x G. tomentosum. Int J Mol Sci. 2018;19(1):243. doi: 10.3390/ijms19010243.
Kost B. Spatial control of Rho (Rac-Rop) signaling in tip-growing plant cells. Trends in Cell Biology. 2008; 18(3): 119-27. doi: 10.1016/j.tcb.2008.01.003.
Krzywinski M, Schein JE, Birol I, et al. Circos: An information aesthetic for comparative genomics. Genome Res. 2009;19(9):1639-45. doi: 10.1101/gr.092759.109.
Li C, Dong YT, Zhao TL, et al. Genome-wide SNP linkage mapping and QTL analysis for fiber quality and yield traits in the upland cotton recombinant inbred lines population. Front Plant Sci. 2016a;7:1356. doi: 10.3389/fpls.2016.01356.
Li CQ, Fu YZ, Sun RR, et al. Single-locus and multi-locus genome-wide association studies in the genetic dissection of fiber quality traits in upland cotton (Gossypium hirsutum L.). Front Plant Sci. 2018;9:1083. doi: 10.3389/fpls.2018.01083.
Li DD, Ruan XM, Zhang J, et al. Cotton plasma membrane intrinsic protein 2s (PIP2s) selectively interact to regulate their water channel activities and are required for fibre development. New Phytol. 2013;199(3):695-707. doi: 10.1111/nph.12309.
Li Y, Wang NN, Wang Y, et al. The cotton XLIM protein (GhXLIM6) is required for fiber development via maintaining dynamic F-actin cytoskeleton and modulating cellulose biosynthesis. Plant J. 2018 Dec;96(6):1269-82. doi: 10.1111/tpj.14108.
Li P, Liu YR, Tan WQ, et al. Brittle Culm 1 encodes a COBRA-like protein involved in secondary cell wall cellulose biosynthesis in sorghum. Plant Cell Physiol. 2019;60(4):788-801. doi: 10.1093/pcp/pcy246.
Li TG, Ma XF, Li NY, et al. 2017a. Genome-wide association study discovered candidate genes of Verticillium wilt resistance in upland cotton (Gossypium hirsutum L.). Plant Biotechnol J. 2017a;15(12):1520-32. doi: 10.1111/pbi.12734.
Li XB, Fan XP, Wang XL, et al. The cotton ACTIN1 gene is functionally expressed in fibers and participates in fiber elongation. Plant Cell. 2005;17(3):859-75. doi: 10.1105/tpc.104.029629.
Li XH, Wu M, Liu GY, et al. Identification of candidate genes for fiber length quantitative trait loci through RNA-Seq and linkage and physical mapping in cotton. BMC Genomics. 2017b;18(1):427. doi: 10.1186/s12864-017-3812-5.
Li XP, Zhou ZJ, Ding JQ, et al. Combined linkage and association mapping reveals QTL and candidate genes for plant and ear height in maize. Front Plant Sci. 2016b;7:833. doi: 10.3389/fpls.2016.00833.
Liu C, Zeng LB, Zhu SY, et al. Draft genome analysis provides insights into the fiber yield, crude protein biosynthesis, and vegetative growth of domesticated ramie (Boehmeria nivea L. Gaud). DNA Res. 2018a;25(2):173-81. doi: 10.1093/dnares/dsx047.
Liu RX, Gong JW, Xiao XH, et al. GWAS analysis and QTL identification of fiber quality traits and yield components in upland cotton using enriched high-density SNP markers. Front Plant Sci. 2018b;9:1067. doi: 10.3389/fpls.2018.01067.
Liu RZ, Wang BH, Guo WZ, et al. Quantitative trait loci mapping for yield and its components by using two immortalized populations of a heterotic hybrid in Gossypium hirsutum L. Molecular Breeding, 2012; 29(2):297-311. doi: 10.1007/s11032-011-9547-0
Ma JJ, Geng YH, Pei WF, et al. Genetic variation of dynamic fiber elongation and developmental quantitative trait locus mapping of fiber length in upland cotton ( Gossypium hirsutum L.). BMC Genomics. 2018a;19(1):882. doi: 10.1186/s12864-018-5309-2.
Ma JJ, Liu J, Pei WF, et al. Genome-wide association study of the oil content in upland cotton (Gossypium hirsutum L.) and identification of GhPRXR1, a candidate gene for a stable QTLqOC-Dt5-1. Plant Sci. 2019;286:89-97. doi: 10.1016/j.plantsci.2019.05.019.
Ma ZY, He SP, Wang XF, et al. Resequencing a core collection of upland cotton identifies genomic variation and loci influencing fiber quality and yield. Nat Genet. 2018b;50(6):803-13. doi: 10.1038/s41588-018-0119-7.
Mahuku G, Chen JF, Shrestha R, et al. Combined linkage and association mapping identifies a major QTL (qRtsc8-1), conferring tar spot complex resistance in maize. Theor Appl Genet. 2016;129(6):1217-29. doi: 10.1007/s00122-016-2698-y.
Martinez AK, Soriano JM, Tuberosa R, et al. Yield QTLome distribution correlates with gene density in maize. Plant Sci. 2016;242:300-9. doi: 10.1016/j.plantsci.2015.09.022.
Nie XH, Huang C, You CY, et al. Genome-wide SSR-based association mapping for fiber quality in nation-wide upland cotton inbreed cultivars in China. BMC Genomics. 2016;17:352. doi: 10.1186/s12864-016-2662-x.
Oda Y, Fukuda H. Emerging roles of small GTPases in secondary cell wall development. Front Plant Sci. 2014;5:428. doi: 10.3389/fpls.2014.00428.
Qin HD, Guo WZ, Zhang YM, et al. QTL mapping of yield and fiber traits based on a four-way cross population in Gossypium hirsutum L. Theor Appl Genet. 2008;117(6):883-94. doi: 10.1007/s00122-008-0828-x.
Reyna NS, Sneller C. Evaluation of marker-assisted introgression of yield QTL alleles into adapted soybean. Crop Sci. 2001; 41, 1317-1321.
Ribaut J, Ragot M. Marker-assisted selection to improve drought adaptation in maize: the backcross approach, perspectives, limitations, and alternatives. J Exp Bot. 2007;58(2):351-60. doi: 10.1093/jxb/erl214.
Rodgers J, Zumba J, Fortier C. Measurement comparison of cotton fiber micronaire and its components by portable near infrared spectroscopy instruments. Textile Research Journal.2017; 87, 0040517515622153.
Said JI, Knapka JA, Song M, et al. Cotton QTLdb: a cotton QTL database for QTL analysis, visualization, and comparison between Gossypium hirsutum and G. hirsutum × G. barbadense populations. Mol Genet Genomics. 2015a;290(4):1615-25. doi: 10.1007/s00438-015-1021-y.
Said JI, Lin ZX, Zhang XL, et al. A comprehensive meta QTL analysis for fiber quality, yield, yield related and morphological traits, drought tolerance, and disease resistance in tetraploid cotton. BMC Genomics. 2013a;14:776. doi: 10.1186/1471-2164-14-776.
Said JI, Song MZ, Wang HT, et al. A comparative meta-analysis of QTL between intraspecific Gossypium hirsutum and interspecific G.hirsutum × G.barbadense populations. Mol Genet Genomics. 2015b;290(3):1003-25. doi: 10.1007/s00438-014-0963-9.
Salnikov VV, Grimson MJ, et al. Localization of sucrose synthase and callose in freeze-substituted secondary-wall-stage cotton fibers. Protoplasma. 2003;221(3-4):175-84. doi: 10.1007/s00709-002-0079-7.
Salvi S, Tuberosa R. The crop QTLome comes of age. Curr Opin Biotechnol. 2015;32:179-85. doi: 10.1016/j.copbio.2015.01.001.
Sato K, Ito S, Fujii T, et al. The carbohydrate-binding module (CBM)-like sequence is crucial for rice CWA1/BC1 function in proper assembly of secondary cell wall materials. Plant Signal Behav. 2010;5(11):1433-6. doi: 10.4161/psb.5.11.13342.
Sebastian SA, Streit LG, Stephens PA, et al. Context-specific marker-assisted selection for improved grain yield in elite soybean populations. Crop Sci. 2010; 50: 1196-206. doi: 10.2135/cropsci2009.02.0078
Shen XL, Guo WZ, Lu QX, et al. Genetic mapping of quantitative trait loci for fiber quality and yield trait by RIL approach in upland cotton. Euphytica. 2007; 155(3): 371-80. doi: 10.1186/s12864-018-4890-8.
Shi YH, Zhu SW, Mao XZ, et al. Transcriptome profiling, molecular biological, and physiological studies reveal a major role for ethylene in cotton fiber cell elongation. Plant Cell. 2006;18(3):651-64. doi: 10.1105/tpc.105.040303.
Shimono H, Abe A, Aoki N, et al. Combining mapping of physiological quantitative trait loci and transcriptome for cold tolerance for counteracting male sterility induced by low temperatures during reproductive stage in rice. Physiol Plant. 2016;157(2):175-92. doi: 10.1111/ppl.12410.
Stewart JMD. Fiber initiation on the cotton ovule (Gossypium hirsutum). American Journal of Botany.1975; 62: 723–30.
Su JJ, Li LB, Pang CY, et al. Two genomic regions associated with fiber quality traits in Chinese upland cotton under apparent breeding selection. Sci Rep. 2016;6:38496. doi: 10.1038/srep38496.
Su JJ, Ma Q, Li M, et al. Multi-locus genome-wide association studies of fiber-quality related traits in Chinese early-maturity upland cotton. Front Plant Sci. 2018;9:1169. doi: 10.3389/fpls.2018.01169.
Sun FD, Zhang JH, Wang SF, et al. QTL mapping for fiber quality traits across multiple generations and environments in upland cotton. Molecular Breeding. 2012; 30(1): 569-82. doi: 10.1186/1471-2229-10-132.
Sun ZW, Wang XF, Liu ZW, et al. Genome-wide association study discovered genetic variation and candidate genes of fibre quality traits in Gossypium hirsutum L. Plant Biotechnol J. 2017;15(8):982-96. doi: 10.1111/pbi.12693.
Sun ZG, Wang XF, Liu ZW, et al. A genome-wide association study uncovers novel genomic regions and candidate genes of yield-related traits in upland cotton. Theor Appl Genet. 2018;131(11):2413-25. doi: 10.1007/s00122-018-3162-y.
Swamy BPM, Vikram P, Dixit S, et al. Meta-analysis of grain yield QTL identified during agricultural drought in grasses showed consensus. BMC Genomics. 2011;12:319. doi: 10.1186/1471-2164-12-319.
Tan ZY, Zhang ZQ, Sun XJ, et al. Genetic map construction and fiber quality QTL mapping using the cottonSNP80K array in upland cotton. Front Plant Sci. 2018a;9:225. doi: 10.3389/fpls.2018.00225.
Tang WX, He YH, Tu LL, et al. Down-regulating annexin gene GhAnn2 inhibits cotton fiber elongation and decreases Ca2+ influx at the cell apex. Plant Mol Biol. 2014;85(6):613-25. doi: 10.1007/s11103-014-0208-7.
Tu LL, Zhang XL, Liang SG, et al. Genes expression analyses of sea-island cotton (Gossypium barbadense L.) during fiber development. Plant Cell Rep. 2007;26(8):1309-20. doi: 10.1007/s00299-007-0337-4.
Vasconcellos RCC, Oraguzie OB, Soler A, et al. Meta-QTL for resistance to white mold in common bean. PLoS One. 2017;12(2):e0171685. doi: 10.1371/journal.pone.0171685.
Visscher PM. Sizing up human height variation. Nat Genet. 2008;40(5):489-90. doi: 10.1038/ng0508-489.
Walford S, Wu YR, Llewellyn DJ, et al. GhMYB25‐like: a key factor in early cotton fibre development. Plant J. 2011;65(5):785-97. doi: 10.1111/j.1365-313X.2010.04464.x.
Walford S, Wu YR, Llewellyn DJ, et al. Epidermal cell differentiation in cotton mediated by the homeodomain leucine zipper gene, GhHD-1. Plant J. 2012;71(3):464-78. doi: 10.1111/j.1365-313X.2012.05003.x.
Wang HY, Wang J, Gao P, et al. Down-regulation of GhADF1 gene expression affects cotton fibre properties. Plant Biotechnol J. 2009;7(1):13-23. doi: 10.1111/j.1467-7652.2008.00367.x.
Wang HT, Huang C, Zhao WX, et al. Identification of QTL for fiber quality and yield traits using two immortalized backcross populations in upland cotton. PLoS One. 2016;11(12):e0166970. doi: 10.1371/journal.pone.0166970.
Wang HT, Zhang RT, Shen C, et al. Transcriptome and QTL analyses reveal candidate genes for fiber quality in Upland cotton. Crop Journal. 2020; 8 (1): 98-106.
Wang J, Wang HY, Zhao PM, et al. Overexpression of a profilin (GhPFN2) promotes the progression of developmental phases in cotton fibers. Plant Cell Physiol. 2010;51(8):1276-90. doi: 10.1093/pcp/pcq086.
Wang L, Cook A, Patrick JW, et al. Silencing the vacuolar invertase gene GhVIN1 blocks cotton fiber initiation from the ovule epidermis, probably by suppressing a cohort of regulatory genes via sugar signaling. Plant J. 2014;78(4):686-96. doi: 10.1111/tpj.12512.
Wang YK, Ning ZY, Hu Y, et al. Molecular mapping of restriction-site associated DNA markers in allotetraploid upland cotton. PLoS One. 2015;10(4):e0124781. doi: 10.1371/journal.pone.0124781.
Wen TW, Wu M, Shen C, et al. Linkage and association mapping reveals the genetic basis of brown fibre (Gossypium hirsutum). Plant Biotechnol J. 2018;16(9):1654-66. doi: 10.1111/pbi.12902.
Wu XM, Wang B, Xie FG, et al. QTL mapping and transcriptome analysis identify candidate genes regulating pericarp thickness in sweet corn. BMC Plant Biol. 2020;20(1):117. doi: 10.1186/s12870-020-2295-8.
Xiao WM, Yang QY, Huang M, et al. Improvement of rice blast resistance by developing monogenic lines, two-gene pyramids and three-gene pyramid through MAS. Rice (N Y). 2019;12(1):78. doi: 10.1186/s12284-019-0336-4
Yanagisawa M, Alonso JM, Szymanski DB. Microtubule-dependent confinement of a cell signaling and actin polymerization control module regulates polarized cell growth. Curr Biol. 2018;28(15):2459-66.e4. doi: 10.1016/j.cub.2018.05.076.
Yang SS, Cui LR. The action of aquaporins in cell elongation, salt stress and photosynthesis. Chinese Journal of Biotechnology. 2009;25(3):321-7.
Yang X, Wang Y, Zhang G, et al. Detection and validation of one stable fiber strength QTL on c9 in tetraploid cotton. Mol Genet Genomics. 2016;291(4):1625-38. doi: 10.1007/s00438-016-1206-z.
Yoo M, Wendel JF. Comparative evolutionary and developmental dynamics of the cotton (Gossypium hirsutum) fiber transcriptome. PLoS Genet. 2014;10(1):e1004073. doi: 10.1371/journal.pgen.1004073.
Yu JW, Yu SX, Gore MA, et al. Identification of quantitative trait loci across interspecific F2, F2:3 and testcross populations for agronomic and fiber traits in tetraploid cotton. Euphytica. 2013; 191: 375-89. doi: 10.1007/s10681-013-0875-5
Yuen CYL, Pearlman R, Silosuh L, et al. WVD2 and WDL1 modulate helical organ growth and anisotropic cell expansion in arabidopsis. Plant Physiol. 2003;131(2):493-506. doi: 10.1104/pp.015966.
Zhang C, Li LB, Liu QB, et al. Identification of loci and candidate genes responsible for fiber length in upland cotton (Gossypium hirsutum L.) via association mapping and linkage analyses. Front Plant Sci. 2019a;10:53. doi: 10.3389/fpls.2019.00053.
Zhang JF, Fang H, Zhou HP, et al. Genetics, breeding, and marker-assisted selection for Verticillium Wilt resistance in cotton. Crop Sci. 2014; 54: 1289-303.
Zhang TZ, Hu Y, Jiang WK, et al. Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat Biotechnol. 2015b;33(5):531-7. doi: 10.1038/nbt.3207.
Zhang TF, Wu TT, Wang LW, et al.. A combined linkage and GWAS analysis identifies QTLs linked to soybean seed protein and oil content. Int J Mol Sci. 2019b; 20 (23): 5915. doi: 10.3390/ijms20235915.
Zhang XX, Guan ZR, Wang L, et al. Combined GWAS and QTL analysis for dissecting the genetic architecture of kernel test weight in maize. Mol Genet Genomics. 2019c;295(2):409-20. doi: 10.1007/s00438-019-01631-2.
Zhang Z, Li JW, Muhammad J, et al. High resolution consensus mapping of quantitative trait loci for fiber strength, length and micronaire on Chromosome 25 of the upland cotton (Gossypium hirsutum L.). PLoS One. 2015b;10(8):e0135430. doi: 10.1371/journal.pone.0135430.
Zou XY, Gong JW, Duan L, et al. High-density genetic map construction and QTL mapping for fiber strength on Chr24 across multiple environments in a CCRI70 recombinant inbred lines population. Euphytica. 2014; 214 (6), 102. doi: 10.1007/s10681-018-2177-4