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Abstract
Chronic pain is a multifactorial condition presenting signi�cant diagnostic and prognostic challenges.
Biomarkers for the classi�cation and the prediction of chronic pain are therefore critically needed. In this
multi-dataset study of over 523,000 participants, we applied machine learning to multi-dimensional
biological data from the UK Biobank to identify biomarkers for 35 medical conditions associated with
pain (e.g., clinical diagnosis of rheumatoid arthritis, �bromyalgia, stroke, gout, etc.) or self-reported
chronic pain (e.g., back pain, knee pain, etc). Biomarkers derived from blood immunoassays, brain and
bone imaging, and genetics were effective in predicting medical conditions associated with chronic pain
(area under the curve (AUC) 0.62–0.87) but not self-reported pain (AUC 0.50–0.62). Among the
biomarkers identi�ed was a composite blood-based signature that predicted the onset of various
medical conditions approximately nine years in advance (AUC 0.59–0.72). Notably, all biomarkers
worked in synergy with psychosocial factors, accurately predicting both medical conditions (AUC 0.69–
0.91) and self-report pain (AUC 0.71–0.92). Over a period of 15 years, individuals scoring high on both
biomarkers and psychosocial risk factors had twice the cumulative incidence of diagnoses for pain-
associated medical conditions (Hazard Ratio (HR): 2.26) compared to individuals scoring high on
biomarkers but low on psychosocial risk factors (HR: 1.06). In summary, we identi�ed various
biomarkers for chronic pain conditions and showed that their predictive e�cacy heavily depended on
psychological and social in�uences. These �ndings underscore the necessity of adopting a holistic
approach in the development of biomarkers to enhance their clinical utility.

Introduction
Chronic pain is a prevalent and complex condition that is di�cult to measure due to its subjective nature
and substantial variability between individuals and contexts 1. Consequently, developing biomarkers as
objective measures of chronic pain has emerged as a high priority, given their potential to improve both
the prognosis and management of pain 2. For instance, biomarkers could detect pain in vulnerable
populations, stratify patients into homogeneous groups to improve treatment e�cacy, or provide an
objective assessment of interventions in randomized controlled trials. Biomarkers could also help de�ne
the pathogenesis of chronic pain conditions and identify novel targets for the development of new
treatments 3. Despite their tremendous value, progress in identifying reliable biomarkers for chronic pain
has been slow, and further research is needed to demonstrate their utility as diagnostic and prognostic
tools.

Identifying biomarkers for chronic pain has been challenging, in part, because the severity of disease or
injury is not a reliable indicator of the prognosis of pain. For instance, radiographic measures of joint
degeneration in osteoarthritis fail to strongly predict the pain experienced by the patient 4. Other limiting

factors hindering the identi�cation of reliable biomarkers for pain include small sample sizes 5, lack of
dataset generalizability 6, restricted availability of biological features, and the investigation of a limited
range of pain phenotypes 7. In addition, the distinction between acute and chronic phases (i.e., duration >
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3 months) 8, its etiology (nociplastic, neuropathic, or nociceptive) 9, and its spatial extent (i.e., localized
or widespread) 10 further complicate the identi�cation of comprehensive signatures for chronic pain.

Adding to the challenge, efforts toward biomarker identi�cation have largely occurred in isolation, with
biological predictors examined independently of other individual factors or environmental contexts. The
interplay between biomarkers from different body systems and psychosocial factors has been largely
ignored. To fully leverage biomarkers in the context of personalised medicine, a holistic understanding of
pain through a multifactorial approach is necessary 1. The emergence of large prospective biobanks,
such as the UK Biobank, provides a unique opportunity to concurrently evaluate numerous biomarkers
and integrate them within a comprehensive framework for the classi�cation and prediction of chronic
pain.

In this study, we applied machine learning to multi-dimensional biological modalities including brain
imaging, bone imaging, blood immunoassays, and genetics to derive candidate biomarkers for chronic
pain. The relevant biomarkers were then contextualized by comparing their performance with
psychosocial predictors of chronic pain that signi�cantly contribute to the development of chronic pain
10. The synergy between biomarkers and psychosocial drivers of pain conditions was subsequently
demonstrated to uncover the intricate biopsychosocial interactions that predict pain.

Results
Our study utilized data from the UK Biobank to train and validate biomarkers for chronic pain related
medical conditions and self-reported pain. The generalizability of the identi�ed biomarkers was then
tested using the All of Us Research Program (n = 27,151) and the Open Pain data repository (n = 250). A
total of 493,211 participants were enrolled in the UK Biobank and completed the initial baseline visit.
During that visit, participants were asked if they experienced pain that interfered with their usual
activities in the last month at various body sites, including the head, face, neck/shoulder,
stomach/abdominal, back, hip, knee, and pain all over their body. Participants who reported pain were
then queried about pain lasting for more or less than 3 months (i.e., chronic or acute). Participants were
also asked about their medical conditions diagnosed from a physician and their use of medications.
Blood samples were collected from participants to conduct whole genome sequencing and bioassay
measurements. A subsample of 19,360 participants underwent a �rst follow up visit about four years
after baseline where blood was recollected and a subsample of 48,079 participants underwent another
follow-up visit about nine years after baseline, where brain imaging (magnetic resonance imaging; MRI)
and bone imaging (dual-energy x-ray absorptiometry; DXA) were acquired. The timeline of data
acquisition (T0: baseline, T1: about four years later, T2: about nine years later) and the sample sizes
available are summarized in Extended Data Fig. 1. A schematic of the study aims is presented in Fig. 1a.

Biomarkers for pain-related medical conditions
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We initially aimed to identify biological signatures predictive of various medical conditions associated
with chronic pain. Models underwent training through nested cross-validation, using logistic regression
to classify individuals reporting pain versus those reporting no pain (Extended Data Fig. 1). These linear
classi�ers were trained on measures of in�ammatory/immune, metabolic, and hematological assays to
derive the blood biomarkers, measures from high-resolution T1-weighted imaging (grey matter),
diffusion-weighted imaging (white matter), and resting-state imaging (functional connectivity) to derive
the brain biomarkers, and measures from bone mineral content, shape, and density to derive the bone
biomarkers. The genetic biomarkers were polygenic risk scores (PRS) derived at different thresholds
from whole genome sequencing data (biological features are described in Supplementary Tables 1–6).

We selected 35 medical conditions in which the prevalence of chronic pain ranged between 48–80% of
cases, most commonly presenting as multi-site pain (Fig. 1a). By comparison, the prevalence of chronic
pain in participants without any diagnosed conditions was approximately 25% and typically localized to a
single site. Medical conditions with pronounced multi-site pain exhibited symptoms in the neck, back,
hip, and knee, whereas conditions where pain was concentrated around a single epicenter were localized
in the head, face, and abdomen (Fig. 1a). Moreover, conditions such as �bromyalgia, chronic fatigue
syndrome, and polymyalgia rheumatica were characterized by pain experienced all over the body
(Fig. 1a). The demographics varied between pain-associated medical conditions and are shown in
Extended Data Fig. 2.

The best predictions were obtained for conditions with a well characterized pathogenesis, such as
multiple sclerosis (brain, AUC = 0.87), gout (blood, AUC = 0.83). and polymyalgia rheumatica (blood, AUC 
= 0.82). About half of the selected medical conditions could be predicted with good accuracy (AUCs > 
0.70), including �bromyalgia (brain, AUC = 0.70), osteoporosis, spinal stenosis (bone, AUCs = 0.72, 0.70),
peripheral neuropathy, and arthritis (blood, AUCs = 0.73, 0.70). The full weighted signatures for each of
these biomarkers are presented in Supplementary Fig. 1–10. Overall, conditions with well-de�ned
pathophysiology (e.g., gout, polymyalgia rheumatica) showed higher accuracy compared to those
primarily de�ned by symptomatology (e.g., non-migraine headache, irritable bowel syndrome, back pain,
Fig. 1b).

To better understand the pathogenesis of the various medical conditions, the performance of
biomarkers (measured using their AUCs) within each biological category were normalized across
medical conditions, after breaking down brain imaging and biochemical assays into their subcategories
(Fig. 1b). Interestingly, the condition that was best predicted from polygenic risk scores was ankylosing
spondylitis, a condition with well-established genetic contributions 11. Moreover, brain functional
connectivity best predicted nociplastic pain conditions, such as �bromyalgia and chronic fatigue
syndrome, which are hypothesized to be caused by central ampli�cation of the nervous system 12. The
comparison between biomarker subcategories also revealed that certain medical conditions could be
independently predicted from multiple biological modalities (e.g., ankylosing spondylitis, �bromyalgia,
and polymyalgia rheumatica) while others were distinctly predicted from a single biological modality
(e.g., chronic fatigue syndrome, osteoporosis, and ulcerative colitis). Sex differences in the performance
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of biomarkers across all modalities and medical conditions are detailed in Extended Data Fig. 3.
Generally, differences in biomarker performance between sexes were minimal. Notable exceptions,
however, included the bone-based marker for osteoporosis, which performed better in men, and the
brain-based marker for peripheral neuropathy, which was more effective in women.

We next entered psychosocial features into the same machine learning analytic pipeline to classify each
pain-associated medical condition. Most pain conditions were classi�ed with fair to excellent accuracy,
with conditions recognized as nociplastic being the most accurately classi�ed, underscoring the
signi�cance of psychosocial factors in conditions like �bromyalgia and chronic fatigue syndrome
(Fig. 1b). A closer examination of these psychosocial contributors, which could serve as either predictors
or outcomes of the conditions, revealed mood and sleep disturbances as primary features for
�bromyalgia, lower substance use as a notable characteristic of COPD, reduced physical activity as a
marker of multiple sclerosis, and occupational factors as signi�cant indicators of carpal tunnel
syndrome. Using support vector machines and gradient boosting decision trees as alternative machine
learning algorithms showed consistent results, although decision trees arti�cially improved the brain and
blood-based biomarkers (Extended Data Fig. 4). Altogether, our results showed that a mosaic of
biological and psychosocial markers coalesce in the manifestation of various conditions.

The summary plot presented in Fig. 1c shows the simultaneous performance of models trained on either
biological or psychosocial features for each condition. These �ndings underscore the variance in
predictive capability between biological and psychosocial factors across different conditions, enabling
the identi�cation of conditions predominantly predicted by biological markers (e.g., gout), those primarily
predicted by psychosocial markers (e.g., non-migraine headache), and those where both types of
markers play a signi�cant role (e.g., polymyalgia rheumatica, rheumatoid arthritis, and stroke). The
deviance explained – re�ecting the reduction in discrepancy between the model's predictions and the
observed data – greatly varied depending on the medical condition. For instance, rheumatoid arthritis
was most strongly determined from blood assays with a strong overlap with psychosocial factors
whereas �bromyalgia was most strongly determined from psychosocial factors with little overlap with
the brain biomarker (Fig. 1c). In the case of self-reported pain, the deviance explained was low and
almost exclusively from psychosocial factors, emphasizing the limits of biological predictors for the
subjective experience of pain.

A validated blood-based signature for various chronic pain conditions
Biomarkers developed from blood immunoassays outperformed other categories of biomarkers,
successfully predicting 13 pain-associated medical conditions with good accuracy (AUC > 0.70; Fig. 1b).
Notably, these biomarkers demonstrated robust predictive performance on other conditions they were
not originally trained to predict (Extended Data Fig. 5). We therefore trained a composite signature to
concurrently predict these 13 medical conditions (Fig. 2a). The composite signature was comprised of
strong positive coe�cients (elevated in disease) for C-reactive protein, neutrophils, and gamma
glutamyl-transferase, alongside notable negative coe�cients (reduced in disease) for lymphocyte
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percentage, HDL cholesterol, and albumin (Fig. 2b). The effect of different medication categories (e.g.,
glucocorticoids, analgesics, statins) on the composite signature was tested by re-assessing the model's
performance after removing individuals who were taking medications from a speci�c category (Extended
Data Fig. 6). The performance was generally stable, with the sharpest decreased in AUC observed upon
excluding users of statins, analgesics, or antihypertensives (AUCs − 0.05, -0.06, -0.06 respectively;
Extended Data Fig. 6).

Using longitudinal data from follow-up visits at 4 (T1) and 9 (T2) years, the composite signature
measured at baseline (T0) predicted newly developed diagnoses at T1 (average AUC 0.70; range: 0.62–
0.79), with robust predictions for over half of the conditions (AUCs > 0.70). The composite signature
measured at T0 could also predict newly diagnosed medical conditions at T2 that were not yet
diagnosed at T1 (e.g., Crohn’s disease, gout, psoriatic arthropathy AUCs > 0.70; Fig. 2c). Effect sizes are
shown in Fig. 2d and longitudinal changes in the expression of the composite signature are shown in
Fig. 2e. A simpli�ed version of the composite signature (Supplementary Table 1) was validated in the All
of Us Research Program (cross sectional; Fig. 2f), obtaining similar performances and demonstrating its
generalizability across conditions in a cohort from a different country. Notably, participants in this
validation cohort were younger (Extended Data Fig. 7) and therefore less likely to use statin or
antihypertensive medication prescriptions.

A validated brain-based signature for nociplastic conditions
In contrast to blood-based biomarkers, biomarkers based on functional connectivity were largely speci�c
to distinctly nociplastic pain conditions such as �bromyalgia, chronic fatigue syndrome, and widespread
pain (AUCs = 0.64–0.66). The weights of the logistic regression models for these three multivariate
signatures are presented in the Supplementary Fig. 5. The encoding maps showing the univariate
structure coe�cients of nodes associated with the model prediction are presented in Fig. 3b.

A new brain-based model was developed to predict a composite phenotype that encompassed all three
nociplastic conditions. The weights of the signature are presented in Supplementary Fig. 7, and the
structure coe�cients of edges associated with the model prediction are depicted in a circular plot in
Fig. 3d and brain rendering in Fig. 3c. The conditions were characterized by a general pattern of
dysconnectivity between brain regions, notably involving the visual cortex, the brainstem and cerebellum,
the dorsal and ventral attention networks, and the sensorimotor network. This brain-based signature,
termed nociplastic functional signature (NFS), was validated in four distinct external datasets available
on the Open Pain repository, which included individuals with chronic pain who predominately reported
high levels of pain severity and impact (Extended Data Fig. 7). We then compared the performance of our
brain signature with the Tonic Pain Signature (ToPS), an existing brain-based signature trained on
capsaicin-induced pain that effectively classi�ed clinical pain in cohorts from the Open Pain repository 6.
The signatures were thresholded across different densities (100% − 0.5%) and then applied in the Open
Pain repository to classify individuals with chronic pain from pain-free individuals (Fig. 3e). While both
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NFS and the ToPS obtained fair to good performances when restricted to the most important functional
connections, the NFS was stable across all thresholds.

Biomarkers for self-report pain
We have identi�ed various biomarkers effective in classifying chronic pain associated medical
conditions. Our �ndings however suggest that biomarkers’ performance may be more limited for self-
reported pain. We therefore trained new models to classify the subjective report of presence or absence
of pain, regardless of its location on the body. Here, biomarkers from either brain, bones, blood, or genes
all demonstrated weak ability to distinguish between participants with and without pain, indicating their
unreliability in pain prediction (chronic pain Vs. pain free: all AUC between 0.55–0.59; acute pain Vs pain
free: all AUC between 0.52–0.54; Fig. 4c). Training separate models to predict pain located at each body
site showed minimal improvement in performance (all AUC < 0.62; Fig. 4d). However, when models were
trained to predict pain reported “all-over-the-body”, all biological categories, with the exception of genetic
PRS, showed increased performance (AUC = 0.66–0.69). This contrasts with models trained on
psychosocial factors including mood, sleep, life stressors, neuroticism, substance use, physical activity,
and socioeconomic factors (psychosocial features are described in Supplementary Table 6), which
performed well across all body sites (AUC > 0.70, Fig. 4d) and exhibited excellent accuracy for pain
reported all-over-the-body (AUC = 0.92). Using alternative machine learning algorithms did not improve
the prediction of self-reported pain (Extended Data Fig. 4). Our �ndings show that candidate biological
markers did not predict chronic pain effectively unless pain was spread across body sites. Conversely,
psychosocial factors offered a more reliable prediction of self-reported pain.

We then trained separate biomarkers to predict the number of pain sites reported by the participant,
varying the extent of pain spreading as the target instead of the anatomical location (Fig. 4e). Here, each
biomarker showed a consistent increase in its performance as the number of pain sites was increased
(average improvement in AUCs between single site and 4 + sites = 0.10; Fig. 4d). Feature encoding maps
of biomarkers trained on varying number of pain sites were generally consistent, suggesting that pain
spreading didn't modify the biological signature but instead ampli�ed its expression (Extended Data
Fig. 8). Our results suggest that biomarkers showed increased sensitivity to the spreading of pain rather
than to its speci�c location, although the performance remained relatively poor compared to
psychosocial factors.

Synergy between biological and psychosocial markers for
pain
Lastly, we aimed to generate a holistic biopsychosocial framework by examining the interactions
between biomarkers and psychosocial factors in relation to the onset and progression of chronic pain
(Fig. 5a). To investigate this interaction, participants were grouped into �ve quintiles representing the
expression of their pooled biomarker and their psychosocial risk. We extracted log probabilities from our
top-performing models as individual risk scores, re�ecting the likelihood of subjects having certain
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conditions. These scores were then averaged to generate a pooled risk score for each subject, effectively
summarizing their overall biomarker and psychosocial risk pro�le. Figure 5b shows the expression of the
pooled risk scores and the odds ratio of diagnosis for the 13 medical conditions predicted from that risk
score, as initially presented in Fig. 3b. Being in the highest quintile for either biomarkers (H) or
psychosocial factors (H) elevated the risk of having the medical condition, as indicated by the odds ratio
(OR) range between 6 and 18. However, being in the highest quintile for both (H-H) dramatically ampli�ed
the risk, with the range of odds ratios escalating between 18 and 42, as shown using a log scale in
Fig. 5c. This effect was also observed in cross sectional data when varying the biomarker modality and
using the medical conditions best predicted from those biomarkers: using the brain-based risk common
to nociplastic conditions for �bromyalgia and chronic fatigue syndrome (Fig. 5d) or bone-based risk for
osteoporosis, spinal stenosis, carpal tunnel syndrome, and gout (Fig. 5e). Overall, the synergy between
biological and psychosocial markers was consistently observed across different biomarker modalities
and pain-associated medical conditions, signi�cantly enhancing the prediction of various medical
conditions.

Concordant results were obtained using the blood risk score in the longitudinal data (Fig. 5f), as new
diagnoses over a period of 15 years occurred more rapidly in the H-H group (Hazard Ratio (HR): 2.26
(2.20–2.32) compared to participants in either H-L (HR: 1.06 (1.01–1.11)) or L-H (HR: 1.05 (0.99–1.11))
or L-L groups (HR: 0.54 (0.51–0.56); Fig. 5g). Thus, participants with high biomarker and psychosocial
risk (H-H quintiles at baseline) exhibited a signi�cantly increased incidence of a new medical condition
compared to subjects with high biomarker but low psychosocial risk scores (H-L quintiles at baseline).
These �ndings imply the same biomarker performs differently depending on the psychosocial context in
which it is being tested.

One of the important limitations of these biomarkers was their inability to explain the subjective
experience of pain associated with the medical condition (Fig. 5h). For each medical condition, the
variance in the number of pain sites was better explained from the psychosocial risk score (r2 ranging
from 0.07–0.28) than the expression of the biomarker (best modality: r2 ranging from 0.00-0.06). These
�ndings were consistent across all categories of biomarkers and medical conditions evaluated. We
conclude that biomarkers and psychosocial factors do not act in isolation but synergize to in�uence the
development and prognosis of pain-related medical conditions. However, solely psychosocial factors
reliably determine the presence, the bodily distribution, and impact of chronic pain.

The blueprint of this holistic framework for the prediction of chronic pain is illustrated by applying
structural equation modeling to longitudinal data available in the UKBB (Fig. 6). Here, the blood-based
risk score, the psychosocial risk score, and their interaction measured at baseline uniquely contributed to
the development of rheumatoid arthritis (RA) over a period of 10 years. Pain outcomes were then
extracted from the Online pain questionnaire collected in 2019. The model shows that biomarkers,
psychosocial risk factors, and their combined effects explained unique variance in the development of
RA. However, only the RA diagnosis and the baseline-measured psychosocial risk factors were directly
linked to pain intensity, spread, and disability.
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Discussion
This study aims to identify and compare various biomarkers for chronic pain using biological measures
from different body systems. Overall, we found that biomarkers for self-reported pain performed poorly,
in contrast to those targeting the medical conditions underlying the pain that demonstrated strong
diagnostic and prognostic potential. Importantly, biological markers and psychosocial factors synergize
to signi�cantly in�uence the prevalence of chronic pain conditions, evident in both cross-sectional and
longitudinal assessments. This highlights the importance of adopting a holistic framework to identify
biomarkers for chronic pain and contributes to re�ning the biopsychosocial model for the prediction of
future chronic pain.

One of the main results of our study is that candidate biomarkers for self-reported pain performed
poorly. This outcome seems contradictory to the extensive literature associating clinical pain with
biological anomalies 13–15 but several factors can explain this discrepancy. First, our �ndings do not
imply the absence of such associations; they instead show that these factors alone are inadequate for
predicting chronic pain in new participants. Second, outside the realm of genetics, most previous studies
comparing chronic pain patients to pain free controls made no distinction between the medical condition
causing the pain and the subjective pain report. Although our results show that pain symptoms were
most strongly predicted from psychosocial factors, they also show that the underlying condition often
could be predicted from biomarkers. Finally, the generalizability of several studies that report the
identi�cation of biomarkers for chronic pain may be limited due to their small sample sizes, which can
lead to over�tting and in�ated effect sizes16. This is consistent with recent �ndings in the UKBiobank,
where minor effect sizes (Cohen’s d < .15) were observed in grey matter reduction when large groups of
chronic pain patients were compared to those without pain17. For these reasons, biological
abnormalities documented in the pain literature remain in the realm of explanation rather than prediction
18. The novelty of our study lies in testing the predictive capacities of various biomarkers in left out
participants. If successful, the identi�ed biomarkers were then further evaluated in a new group of
participants outside of the UK Biobank. This is especially important given that accurate predictions of
clinical outcomes within trials in which models were developed often showed no better than chance level
when tested in out-of-sample patients 19.

The poor performance of biomarkers for self-reported pain is likely to be explained by the heterogeneity
of the conditions (e.g., ankylosing spondylitis, spine arthritis, or sciatica) causing pain at a common body
site (e.g., back). Yet, pain and its spatial spread were still best predicted from psychosocial factors after
selecting a single medical condition for which an effective biomarker was identi�ed (e.g., rheumatoid
arthritis, ankylosing spondylitis, Crohn’s disease). This highlights the challenges of identifying
biomarkers for a subjective measure characterized by non-linearity between its biological manifestation
and its subjective experience. Our results demonstrate that chronic pain cannot be fully accounted for
from the pathogenesis of the medical condition, which aligns with abundant previous research and
clinical experience 20,21. This phenomenon was consistent regardless of the body systems used to train



Page 11/43

the biomarkers or the etiology of the predicted medical conditions. These �ndings emphasize that
overlooking the role of psychosocial factors would severely constrain our capacity to identify future
biomarkers that would generalize across individuals. The limited ability of biological markers, such as
brain imaging, for clinical predictions is not exclusive to the �eld of pain research. The �eld of psychiatry
has encountered a comparable problem with depression 22 for which no clinically useful brain-based
biomarkers have yet been identi�ed 23.

Nonetheless, efforts in chronic pain research have historically aimed to identify biomarkers generalizable
to clinical pain (i.e., presence of chronic pain) 2,14,23. Our �ndings suggest a more targeted approach is
necessary, focusing on biomarkers speci�c to the medical conditions associated with clinical pain.
Chronic pain originates from various mechanisms—nociplastic, neuropathic, in�ammatory, and
nociceptive—each characterized by unique pathological features embedded in different bodily systems
9,24,25. By concentrating on speci�c pain-related conditions, biomarkers can more accurately target these
distinct mechanisms. For example, a biomarker developed for spinal stenosis can speci�cally target its
neuropathic origins, unlike a biomarker for general back pain, which must account for a variety of
underlying mechanisms. Another example is how in�ammatory processes in rheumatoid arthritis and
Crohn’s disease are re�ected by blood biomarkers, which show strong positive coe�cients for indicators
such as C-reactive protein and leukocytes (Supplementary Fig. 1). Additionally, this method allows for
the development of composite biomarkers suitable for use across multiple diagnoses that share similar
mechanisms. By breaking down chronic pain into its clinical subtypes, we can identify and leverage
mechanistic overlaps to craft biomarkers that span multiple conditions. We demonstrated this through a
composite blood signature predicting several in�ammatory, neuropathic, and nociceptive conditions
(Fig. 2), as well as a functional connectivity signature for nociplastic pain (Fig. 3), demonstrating that
despite condition-speci�c biological markers, a shared underlying pathology can offer su�cient
predictive capability.

Lastly, anchoring biomarker discovery in diagnoses rather than subjective pain reports provides a more
objective and consistent basis for biomarker research. The complexities surrounding the de�nition of
chronic pain—its duration, characteristics, and subjective experience—presents challenges in biomarker
validation 26. Focusing on clinically recognized pain diagnoses offers a more stable framework,
sidestepping the variability of subjective pain reports with the more consistent symptomatology of
diagnosed conditions. This shift towards clinical phenotypes in biomarker research promises to re�ne
our understanding of the pathogenesis and treatment of chronic pain, moving beyond the limitations of
subjective pain assessment.

Our results do not undermine the importance of subjective pain reports or their clinical relevance;
patient-reported pain and psychosocial factors, such as mental and physical health, remain central
targets for treatment. However, we found that even effective biomarkers for speci�c pain diagnoses, like
gout and rheumatoid arthritis do not correlate directly with these subjective pain reports (Fig. 5,6).
Instead, psychosocial factors emerge as key to understanding reports of pain severity, its impact, and
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spread (Fig. 6), highlighting the often-overlooked signi�cance of psychosocial contexts in biomarker
development for chronic pain.

Reliable biomarkers for pain-causing pathology were unavailable for most forms of pain conditions 2.
Here, the most consistent predictions were obtained using blood immunoassays, where notably, higher
C-reactive protein, neutrophils, and cystatin-C and lower lymphocyte percentage, HDL cholesterol, and
albumin predicted various in�ammatory, musculoskeletal, and neuropathic pain conditions—a
conclusion supported by clinical and research evidence 27–30. The signature is therefore likely to re�ect a
systemic state of in�ammation or general health deterioration that is unspeci�c to any individual pain
condition but rather characterizes a broader state of pathology. There is precedent for such multidisease
models, as evidenced by Buergel et al. (2022), who applied deep learning to metabolomics to assess the
risk of various common diseases 31. Here, our study employed routine immunoassays—such as C-
reactive protein for in�ammation, uric acid for metabolic assessments, and neutrophil counts for
immune response—targeting mechanisms central to pain-associated conditions. We then applied
interpretable linear models and encoding maps to speci�cally trace their impacts on the conditions.
Importantly, the composite signature trained to simultaneously predict multiple pain conditions
performed well cross sectionally and longitudinally and generalized in an external large dataset, the All of
Us Research Program. Our results also uncover brain-based markers that were more speci�c for pain
conditions characterized by widespread pain, such as �bromyalgia, chronic fatigue syndrome, or pain
experienced all over the body. These �ndings align with the literature suggesting that widespread pain
observed in nociplastic conditions arises from altered brain function 12,32. The structure coe�cients of
the brain connectivity associated with the prediction of the model revealed lower functional connectivity
between a distributed set of brain regions, a phenomenon that has previously been reported in
�bromyalgia patients 33. The NFS was successfully validated in four external datasets available in the
Open Pain repository.

The comprehensive set of biomarkers derived in this study to classify various medical conditions and
pain reports highlights the importance of a holistic framework for the prediction of chronic pain. Our
results show that biological and psychosocial risk factors additively in�uence the likelihood of receiving
a medical diagnosis, indicating that changes in environmental, behavioral, and psychosocial factors
either preceding or concurrent with disease onset, are crucial for accurately classifying chronic pain
conditions. By combining a blood draw measuring the composite signature with a brief questionnaire
predicting pain spread such as the risk Risk of Pain Spreading (ROPS)10, the holistic approach outlined in
this study could be leveraged to signi�cantly improve the prognosis of pain-associated conditions and
self-reported pain symptoms like spread, severity, and interference.

Altogether, our results imply that painful medical conditions can be accurately predicted from the
synergy between biological and psychosocial factors, but that pain report was solely predicted from
psychosocial factors. Thus, our �ndings challenge the established idea of a reliable biological marker
that could, on its own, detect or predict the subjective experience of chronic pain reported by patients.
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Instead, our research suggests that future biomarker discovery efforts in chronic pain should incorporate
relevant psychosocial factors—such as occupational in�uences in carpal tunnel syndrome or lifestyle
factors in Crohn’s disease—into their development protocols. This holistic approach aims to enhance the
diagnostic and prognostic utility of biomarkers and support personalized treatment strategies. By
integrating biological and psychosocial insights, this comprehensive strategy promises not only to re�ne
diagnostic accuracy but also to identify treatments that address both the mechanistic underpinnings and
the psychosocial dimensions of pain, ultimately reducing patient suffering.

Online Methods

Overview of the UK Biobank population
The UK Biobank project is a large-scale, prospective, and ongoing study initially established to allow
extensive investigation on genetic factors and lifestyle determinants of a diverse range of common
diseases of middle-aged and older adults1. To recruit the intended sample size of approximately 500,000
participants, over 9 million invitations were sent to individuals registered in the UK National Health
Service (NHS) with an inclusion age range of 40–69 years old and based on their living within a
reasonable distance from an assessment center. Baseline recruitment and data collection from 503,317
participants who consented to join the study took place between 2006 and 2010 in 22 assessment
centers throughout Scotland, England, and Wales2. All participants gave written, informed consent, and
the study was approved by the Research Ethics Committee (REC number 11/NW/0382). Further
information on the consent procedure can be found elsewhere. Subsets of baseline participants were
invited later for follow-up visits and/or were asked to provide data on certain online questionnaires at
certain timepoints. The following datasets from different timepoints are used to address different aims
of our study.

Biological Modalities
Broad biological modalities indexing four diverse domains of physiological health were selected for
analyses. Biological measures included blood immunoassays, polygenic risk scores, bone structure
estimates derived from Dual-energy X-ray absorptiometry (DXA) scans, and brain imaging phenotypes.
For certain analyses, we segmented blood and brain modalities into subcategories. Speci�cally, blood
was divided into three distinct assay types: those assessing in�ammatory or immune functions,
metabolic functions, and hematological functions. Brain imaging was divided into: T1-weighted MRI for
anatomical insights, diffusion MRI (dMRI) for white matter architecture, and resting-state functional MRI
(fMRI) for brain connectivity.

The availability across study visits, derivation, and processing of each modality are detailed below:

Blood immunoassays (52 features, N = 476,787)
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The UK Biobank measured 31 haematological
(https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/haematology.pdf) and 30 biochemical
(https://biobank.ndph.ox.ac.uk/showcase/ukb/docs/serum_biochemistry.pdf) blood assays using high
�delity haematology, immunoassay, and clinical chemistry analyzers. For the purposes of this study, 52
distinct assays were selected measuring a range of physiological functions including liver health
(Gamma-Glutamyl transferase), kidney function (Cystatin C), systemic in�ammation (C-Reactive protein),
and immune activation (Leukocyte count), among others. Blood assays were collected twice: initially
during the baseline evaluation of 502,494 participants and subsequently in a subset of 20,193
participants who returned approximately 4 years later (range: 1–6 years), hereafter referred to as the 4-
year follow-up. At both time points, participants missing data for 22 or more assays (constituting over
half of the selected assays) were excluded from further analysis. For the remaining participants with any
missing data (up to 13% of the total sample, or a maximum of 62,216 individuals), we imputed missing
values using the median of the available data. This process yielded a �nal analytic cohort of 476,787
individuals at baseline and 19,360 at the 4-year follow-up. To address distributional biases in raw assay
measures, we applied logarithmic transformation to all immunoassay data prior to model training.

Polygenic Risk Scores (20 features, N = 408,597)

Blood samples collected at the baseline visit allowed different types of assays to be performed,
including genetic data. A total of 488,118 underwent genotyping and have available phenotype
information. Participants of similar genetic ancestry (Field: 22018), participants of non-European
ancestry (Field: 22006), as well as participants who failed quality control (Field: 22010) were excluded
from genetic analysis, resulting in 408,597 participants. This population was split into a training and a
testing set, with the latter comprising individuals who attended the 9-year follow-up (n = 40,898), as
conducted in Tanguay-Sabourin et al. 20236. Consequently, polygenic risk scores were estimated within
the training set of 367,699 participants and evaluated on the testing set of 40,898 participants as
described below:

Genome Wide Association Studies (GWAS): For each training set across each pain phenotype and pain-
associated diagnosis, we conducted genome-wide association studies (GWAS) using regenie26. Regenie
was selected for its ability to address cryptic relatedness among UK Biobank (UKB) participants and
manage case/control imbalances. Covariates included sex, age, age squared, genotyping array, the �rst
40 genetic principal components, and dummy-coded recruitment sites. Sex was determined based on
genetically ascertained sex (XY = man, XX = woman; �eld 22001). In regenie's step 1, 93K SNPs identi�ed
by the UKB for kinship estimation were analyzed. For step 2 in regenie, approximately one million SNPs
were evaluated, selected from the European-speci�c subset of the pan-UK Biobank project. These SNPs
are high-quality HapMap 3 variants that meet �ve criteria: located in autosomes, outside the MHC region,
bi-allelic, with INFO > 0.9, and MAF > 1% in both UKB and gnomAD datasets. Individuals retained for
analysis were of European ancestry (�eld 22006), excluding any with failed genotyping quality, unusual
heterozygosity, sex chromosome anomalies, or those who had withdrawn from the study by December
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2021 (according to the sample-QC �le from resource 531). Lastly, narrow-sense heritability estimates for
each pain phenotype and diagnosis were derived using LDSC from the GWAS summary statistics27.

Polygenic Risk Scores (PRS)

Polygenic Risk Scores (PRS) were constructed ensuring that included SNPs were not in linkage
disequilibrium, starting from the genotyping data in PLINK format provided by the UK Biobank. Utilizing
PLINK,28,29 we removed all non-rsID SNPs as previously described, and excluded SNPs with MAF < 0.001,

genotyping error rates > 1%, and Hardy-Weinberg equilibrium P-value < 10− 12. Linkage disequilibrium
analysis among SNPs was performed within a 100 kb window, 100 variant steps, and an R2 threshold of
0.2, resulting in 261,217 SNPs selected for PRS construction. These SNPs’ GWAS effect sizes were
aggregated to compute the PRS using PRSice-2 for each individual and pain phenotype, incorporating
only SNP effect sizes from summary GWAS data of the training sets.30 The PRS included all GWAS

covariates and applied 20 P-value thresholds for SNP inclusion, ranging from P = 5x10− 8 to P = 1.
Additionally, pathway-based PRS were analyzed using PRSet with Neural/Immune Gene Ontology (NIGO)
pathways, focusing on those containing 10 to 100 genes for enhanced speci�city.31,32,33

Brain imaging: A sub-sample of baseline participants were invited to attend a follow-up roughly 9 years
later (range: 3–13 years), hereafter referred to as the 9-year follow-up. At the time of this study, data were
available for 49,001 participants who had completed this follow up, which included a Magnetic
Resonance Imaging (MRI) scan of the brain and the same questionnaires and assessments as baseline3.
Structural and functional brain features were derived from three neuroimaging modalities, including T1-
weighted MRI, diffusion MRI (dMRI) and resting-state functional MRI (fMRI). The image processing
pipeline, artifact removal, cross-modality and cross-individual image alignment, quality control and
phenotype calculation are described in detail in the central UK Biobank brain imaging documentation
(https://biobank.ctsu.ox.ac.uk/showcase/showcase/docs/brain_mri.pdf) and by Alfaro-Almagro and
colleagues4. Additionally, we excluded participants with excessive head motion or suboptimal signal-to-
noise ratio, as well as those whose T1 brain images required excessive warping for non-linear alignment
to standard space, de�ned quantitatively as deviations greater than three standard deviations from the
group mean (exceeding the 99.75th percentile).

T1-weighted MRI

(1041 features, N = 41,979) T1-weighted MRI features include regional and subcortical gray matter
volume, cortical thickness, surface area, and volume, regional gray/white matter intensity contrast as
derived from T1-weighted MRI. Participants missing data for more than 75% of the features (exceeding
780 features) were excluded from further analysis, the remaining missing data was imputed using the
median.

Diffusion-weighted MRI
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(614 features, N = 36,779) Diffusion-weighted MRI features include microstructural measures of white
matter tracts including mean fractional anisotropy and mean diffusivity as well as derivatives of
diffusion tensor imaging including orbital diffusivity, MO, L1, L2, ICVF, and ISOVF. Participants missing
more than 75% of the features (exceeding 461 features) were excluded from further analysis. This
resulted in the �nal sample of 36,779 individuals with complete diffusion features, as such no imputation
was required.

Resting state functional MRI: (38,781 features, N = 37,414) Resting-state functional Magnetic Resonance
Imaging data is based on the minimally preprocessed pipeline designed and carried out by the FMRIB
group, Oxford University, United Kingdom. The minimally preprocessed resting-state fMRI data from the
UK Biobank were analyzed using the following preprocessing steps: motion correction with MCFLIRT4,
grand-mean intensity normalization, high pass temporal �lter, �eldmap unwarping, and gradient
distortion correction. Noise terms were identi�ed and removed using FSL ICA-FIX. Full information on
the UK Biobank preprocessing is published4. Additional preprocessing included warping the image in
native space to the 3mm MNI template (FSL), despiking using 3DDespike (AFNI from Nipype), 6-mm
kernel smoothing (Nilearn), and resampling to 3-mm (for storage purposes). A modi�ed Brainnetome
atlas5 including additional midbrain, brainstem, and cerebellar regions was used to parcel the brain into
279 distinct regions. Dynamic connectivity was estimated between each region to derive a functional
connectome using Dynamic Conditional Correlation (DCC). DCC is based on generalized autoregressive
condition heteroscedastic (GARCH) and exponential weighted moving average (EWMA) models
(implemented by https://cocoanlab.github.io/tops/).

Bone structure: (68 features, N = 40,815) At the time of this study, measures from Dual-energy X-ray
Absorptiometry (DXA) bone scans were available for 40,815 participants at the 9-year follow-up
(https://biobank.ndph.ox.ac.uk/showcase/ukb/docs/DXA_explan_doc.pdf). Radiographers analyzed the
scans at the whole body, spine, and hip levels either during or shortly after the image acquisition. This
analysis facilitated the generation of comprehensive numerical measures, including bone area, bone
mineral content (BMC), and bone mineral density (BMD). A total 91 features across seven bone systems
—spine, femur, head, legs, pelvis, arms, and ribs were extracted by the UK Biobank. From this pool, we
excluded features with low coverage (fewer than 10,000 participants or 25% of the sample), narrowing
the feature space to 68. Among the 40,815 participants assessed, we imputed any remaining missing
data, which affected 4.9% or 2,015 values, using the median.

Psychosocial Phenotypes (81 features, N = 493,211)

We used a truncated set of psychosocial features originally de�ned in our recent paper, see Tanguay-
Sabourin, C. et al for details6. As the goal of the present study is to compare biological predictors to
psychosocial predictors, we excluded biological features included in the original model to generate a
strictly psychosocial modality, including BMI, age, sex, ethnicity, grip strength, and blood pressure. Thus,
a total of 81 features collected at the baseline and follow-up visits were selected a-priori based on their
relevance to chronic pain. The selection was based on the Prognosis Research Strategy (PROGRESS)
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group who recently provided a framework for the development of a prognostic model to determine risk
pro�le7. Variables were organized through an iterative approach along a hierarchical framework from 81
features into 8 categories forming three distinct domains (i.e., mental health, physical health, and
sociodemographic). The three domains are as follows:

Mental health: The mental health domain includes 3 categories: i) neuroticism – all individual items and
their total sum-score – based on 12 neurotic behaviors closely linked to negative affect, ii) traumas –
illness, injury, bereavement, or stress in the last 2 years – including 6 events, and iii) mood – reported
frequency of certain moods in the past 2 weeks and visits to a general practitioner or psychiatrist for
nerves, anxiety, tension, or depression.

Physical health: The physical health domain includes 3 categories: i) physical activity – Metabolic
Equivalent Task (MET) scores computed using the International Physical Activity Questionnaire (IPAQ)
guidelines8, ii) sleep – questions regarding duration, napping, snoring, and sleeplessness, iii) substance
use – smoking and alcohol use.

Sociodemographic: The sociodemographic domain includes 2 categories: i) socioeconomic status –
education completed, income, employment, etc., ii) occupational measures – individuals present within
household, social entourage, and job type (e.g., manual or physical job).

For a detailed view of the biological and psychosocial features included in this study, see Supplementary
Tables 1–6.

Pain phenotypes in the UK Biobank
One-month pain

Participants reported if they experienced pain impacting their usual activities at any major anatomical
body sites (head, face, neck or shoulder, back, stomach or abdominal, hip, knee, or pain all over (PAO)) in
the last month. Participants answering PAO were not allowed to report additional pain locations. This
category consists of both chronic and acute pain.

Acute and chronic pain sites

Participants reporting pain at a given site in the last month were then asked if the pain at that site had
persisted for more than 3 months. This question was used to distinguish between a chronic pain site,
one present for more than 3 months, and an acute pain site, one present for 3 months or less, according
to the classi�cation from the International Association for the Study of Pain1.

Deriving 14 target pain phenotypes

From these data, we derived 14 pain phenotypes, including a general chronic pain phenotype
representing pain at any of the body sites, and a general acute pain phenotype. Additionally, we identi�ed
seven chronic pain site phenotypes, each representing pain experienced at one of the speci�ed body
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sites, and four phenotypes that quanti�ed the number of chronic pain sites reported, categorizing the
extent of chronic pain spread ranging from 1 to 4 or more distinct sites.

Pain-Associated Diagnoses
Participants' diagnoses were sourced from both self-reported interviews conducted at UK Biobank
assessment centers (Field IDs 20001 and 20002) and healthcare records provided by the UK National
Health Services (NHS). In the interview process, trained nurses validated and, if necessary, re�ned the
medical conditions that participants initially reported through a touchscreen questionnaire. In cases of
uncertainty, participants described their condition to a nurse, who then assigned a suitable code or
logged it as a free-text description. This free text was later matched to a speci�c entry by a physician.

For health outcomes resulting in hospital admissions, hospital inpatient records utilized the International
Classi�cation of Diseases and Related Health Problems (ICD-10) coded primary or secondary diagnoses
(Field IDs 41270 and 41271). Meanwhile, primary care data, available for 45% of the study cohort (n = ~ 
230,000), were obtained from Read Codes v2, as coded by general practitioners (Field ID 42040). The UK
Biobank additionally provided curated data �elds indicating the �rst occurrence of a set of diagnostic
codes (Category: 1712) for a wide range of health outcomes across self-report, primary care, hospital
inpatient data and death data, mapped to a 3-digit ICD code. For broader diagnoses that were effectively
captured with a three-digit ICD code (e.g., Rheumatoid arthritis; ICD code: M05 & M06), we extracted
information from this �rst occurrences database. In contrast, for conditions de�ned by more granular
ICD coding (e.g., ankylosing spondylitis; ICD code: M081), data were manually curated from self-report
and hospital inpatient records.

For our analysis, we selected 35 pain-associated diagnoses based on their signi�cant pain prevalence
and ample sample size. Criteria included having over 45% pain prevalence (acute or chronic) and an
occurrence exceeding 100 participants at the 9-year follow-up. These diagnoses were then aligned with
the �rst occurrences database, ICD-10 codes and primary care data, collating all participants with a
record for each speci�c diagnosis. For instance, the sciatica group amalgamated both self-reported and
healthcare recorded (ICD codes: M543 & M544) instances of sciatica. A detailed list of codes for the 35
diagnoses is available in Supplementary Table 7. To ascertain that an illness's onset or diagnosis
predated a given study visit, we contrasted the earliest recorded illness date with the participant's
respective visit date at each visit (e.g. baseline, 4-year, and 9-year follow-up).

To enable comparisons across diagnoses, we de�ned the healthy control group as participants with no
self-reported diagnoses and no self-reported or healthcare recorded instances of the 35 pain-associated
diagnoses. This resulted in a healthy control sample size of 103,034 (20.5% of full sample size)
participants at the baseline visit and 5,237 (11.6% of full sample size) participants at the 9-year follow-
up. As such, the control population may not be representative of the full study population.

Demographic information including sex, ethnicity, and age distributions for each diagnosis within the UK
Biobank, is detailed in Extended Data Fig. 4.
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Validation cohorts
To validate the biomarkers identi�ed in this study, data were sourced from two distinct validation
cohorts: the All of Us Research Program (AoU) and four datasets from the OpenPain repository
(Extended Data Fig. 8).

All of Us Research Program

All of Us Research Program aims to enroll over a million U.S. participants, with a focus on individuals
from underrepresented groups in research. The program collaborates with healthcare organizations to
collect and share electronic health records (EHR) from consenting participants, which includes any
healthcare diagnosed medical conditions and blood assays the participants have had collected. These
records are standardized to the Observational Medical Outcomes Partnership (OMOP) Common Data
Model by data specialists at each organization, enabling uniformity across different EHR systems9.

OpenPain repository datasets

OpenPain is a repository featuring data from brain imaging studies on chronic pain. We utilized four
studies from OpenPain that provided whole-brain resting-state fMRI imaging for chronic pain subjects
and pain-free controls. The �rst dataset involved UK participants with chronic back pain (24 patients, 30
controls), the second dataset comprised Japanese chronic back pain patients (17 patients, 17 controls),
the third and fourth datasets featured US patients with chronic back pain (74 and 66 patients,
respectively, with 22 controls in the fourth dataset). These datasets were amalgamated to form a uni�ed
validation cohort totaling 181 patients and 69 controls. Consistent brain imaging processing protocols
were applied across all datasets, as described below

Preprocessing was conducted using fmriprep version 1.4.1, incorporating the following preprocessing
steps: motion correction with MCFLIRT, susceptibility distortion correction to correct for �eld
inhomogeneities, registration to the T1w image using FLIRT, followed by warping from native space to
the 3mm MNI template (FSL), and removal of physiological and motion-related noise terms, including
raw signals, squared signals, and their �rst derivatives for white matter, cerebrospinal �uid, translations,
and rotations along x, y, and z planes from timeseries using Nilearn’s signal.clean function. Aligning with
the preprocessing of the UK Biobank fMRI data, we included connectivity despiking using 3DDespike
(AFNI), 6-mm kernel smoothing (Nilearn), and resampling to 3-mm, followed by parcellating the brain into
279 distinct regions using the Brainnetome atlas and estimating parcel-wise dynamic functional
connectivity using Dynamic Conditional Correlation (DCC). Lastly, neurocombat harmonization was
employed to mitigate site-speci�c effects in the data.

Statistical analysis

Machine learning Models
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Predictive machine learning models were constructed to classify the 14 pain phenotypes and 35 pain-
associated diagnoses from pain-free or diagnosis-free controls, respectively. Machine learning models
implemented nested cross-validated logistic regression (implemented using SnapML) with a randomized
hyperparameter search (implemented using scikit-learn) to optimize the ridge regression regularization
hyperparameter (‘l2’) for each individual model. To address cases of class imbalance, the 'class_weight'
parameter in the models was set to 'balanced'. This adjustment modi�es the loss function penalty to
ensure that the majority class does not disproportionately in�uence the model. Both inner and outer
layers of the nested Cross-Validation (CV) utilized a 5-fold strategy (see Extended Data Fig. 1 for a
schematic of the modeling pipeline). To prevent data leakage and minimize model bias, feature
preprocessing steps including standardization and residualization were �t to the training folds and then
applied to the validation fold within each nested CV. Alternative algorithms such as support vector
machines and gradient boosting trees were evaluated but were not chosen as the primary machine
learning methodology based on their performance metrics (Extended Data Fig. 2).

Machine learning models were trained separately on features comprising the 5 distinct modalities
(blood, genetics, brain, bone, and psychosocial) to classify the 14 pain phenotypes and 35 pain-
diagnoses. This approach yielded 70 distinct pain phenotype models (14 pain phenotypes multiplied by 5
modalities) and 175 distinct pain-diagnosis models (35 diagnoses multiplied by 5 modalities). Additional
models were trained on the modality subcategories (in�ammatory/immune, metabolic, hematological,
T1 imaging, diffusion imaging, and resting state functional connectivity), for each pain phenotype and
diagnosis.

To bolster the reliability of our �ndings and account for potential variability, each model underwent 5
iterations with unique random states (e.g., 5-times repeated 5-fold nested cross-validation). This
procedure randomized the distribution of subjects across the training and test sets, from which we
calculated con�dence intervals for model performance metrics.

Mitigating confounding variables

The in�uence of confounding variables on machine learning predictions, especially in the context of
biological data, is well-documented11,12,13. To mitigate potential biases introduced by confounders, we
integrated regression-based deconfounding (i.e., residualization) within each of our modeling pipelines.

For each cross-validation fold:

1. A linear regression model was �t within the training data on features from a given modality to
predict confounding variables.

2. This trained model was then applied to the features of both the training data and the left-out
validation data to extract residual values, with the linear effects of the confounding variables
removed. The residual values were then used as the feature space for model training (on training
folds) and evaluation (on validation fold) of pain endpoints.
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For a comprehensive list of the confounders addressed and their speci�c handling within each modality,
refer to the detailed modality pipeline descriptions below:

Blood biochemistry pipeline

A signi�cant portion of participants within the diagnosis groups reported taking medications known to
alter blood biochemistry. These include, but are not limited to, hypertensive drugs, anti-rheumatic
medications, and immunosuppressants. Recognizing the potential biases these medications could
introduce in the biochemical features under study, we incorporated propensity score matching to control
for them. This approach aimed to align subjects from the disease groups with their counterparts in the
control group based on self-reported medication intake.

While unable to eliminate all confounding effects of medications, our method effectively mitigated a
considerable extent of the confounding impact, as evident from Extended Data Fig. 6. To provide a brief
overview:

Propensity Score Estimation: Propensity scores, which represent the likelihood of an individual being
treated considering speci�c confounds, were generated via a logistic regression model. We
extracted confounds by implementing the top 5 components from a mixed factor analysis on the
predominant 5 medications, including statins, associated with each disease group. This, combined
with age and sex, served as the foundation for our matching process between case and control
groups.

Matching Process: Each individual from the case group was paired with a counterpart in the control
group using the Hungarian matching algorithm14. This algorithm determines an optimal match by
minimizing the overall distance or "cost" between paired subjects. This distance is calculated based
on the absolute difference in their estimated propensity scores. A conservative caliper, de�ned as
0.211, ensures that this difference does not surpass a predetermined threshold.

Timing and Application: It's important to note that propensity score matching was executed prior to
the cross-validation data split. This ensured consistency in the data across every modeling iteration.

Polygenic risk score pipeline

In the polygenic risk score models, we applied a thresholding procedure to the outputs of each diagnosis
GWAS, yielding 20 levels of statistical signi�cance thresholds for each single nucleotide polymorphism,
ranging from P = 5x10− 8 to P = 1. Models were subsequently trained on these thresholds to determine
the optimal P-value threshold to distinguish between the pain outcome group and the healthy control
group, without adjusting for any confounding variables.

Brain imaging pipeline: Brain imaging models were trained on multi-modal brain imaging features
including white matter features from diffusion-weighted imaging, structural features from T1-weighted
imaging, and functional connectivity features from resting state imaging. Several confounding variables
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were adjusted for in brain imaging pipelines: average absolute head motion, volumetric scaling (to
account for variations in brain size) from the T1 image to a standardized space, age, and sex.

Bone structure pipeline

Bone structure models were trained on DXA derived features including bone area, bone mineral content
(BMC), and bone mineral density (BMD), and were adjusted using age and sex as confounding variables.

Psychosocial pipeline

To align with the methodologies employed in other modalities we adjusted for age and sex as
confounding variables in our models that were trained on psychosocial features.

Classi�cation of pain phenotypes
The area under the receiver operating characteristic curve (ROC-AUC) scores were calculated from
models trained to differentiate between pain phenotypes and pain-free controls (Fig. 4B, C, and D). ROC-
AUC scores were obtained from the testing folds of �ve iterations of machine learning models, each
employing a 5-fold cross-validation (CV) strategy, thereby yielding a total of 25 testing metrics per pain
endpoint. The reported ROC-AUC scores estimate the effectiveness of the models in distinguishing
between participants with a given pain phenotype (i.e. general chronic pain, general acute pain, chronic
pain site, or number of chronic pain sites) and those without. Con�dence intervals at the 95% level were
calculated using 1,000 bootstrap resamples of the 25 AUC metrics. Additionally, heritability estimates
were derived from GWAS of the general chronic pain, acute pain, and chronic pain site models.

Phenotyping and classi�cation of pain-associated
diagnoses
Pain-associated diagnoses were phenotyped based on their self-reported chronic pain prevalence and
segmented according to the number of reported pain sites, ranging from 1 to 4 or more. Furthermore, the
localization of chronic pain for each diagnosis was determined by calculating the prevalence of pain at
the 7 recorded body sites for each condition. These prevalence rates were then normalized (z-scored)
across conditions for each speci�ed site, providing a standardized measure of pain localization or
distribution for each diagnosis (Fig. 1B).

The classi�cation performance for classifying pain-associated diagnoses from diagnosis-free
participants was assessed using the same methodology applied for the pain phenotype models. This
approach resulted in 25 testing metrics for each diagnosis across each modality-speci�c machine
learning model. To identify the most effective biological modality for classifying each diagnosis, we
selected the modality with the highest average AUC score across modeling iterations for each diagnosis.
We then computed 95% con�dence intervals for these selected scores using 1,000 bootstrap resamples,
with the results depicted in Fig. 1C. Adjacently, AUC scores derived from the psychosocial classi�cation
models are presented, enabling a side-by-side evaluation of the biological and psychosocial modalities'
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performance across diagnoses. Comprehensive AUC scores for diagnoses across all modalities are
provided in Extended Data Fig. 5. To interpret the distinct contributions of each modality to diagnosis
classi�cation, we trained additional models on modality subcategories. Consequently, AUC scores were
derived from models trained on the blood modality subcategories, including in�ammatory/immune,
metabolic, and hematological markers. For the brain modality, models were trained on T1 structural
features, diffusion-weighted imaging for white matter integrity, and resting-state functional connectivity.
Within the psychosocial modality, we investigated eight subcategories: mood, neuroticism, life stressors,
sleep quality, substance abuse, physical activity levels, socioeconomic status, and occupational factors.
However, the bone structure and genetic modalities remained undivided and were analyzed as whole.
Within diagnosis averaged AUC scores obtained from the subcategories—or from entire modalities in the
cases of bone structure and genetics—were subsequently standardized using z-scoring relative to other
diagnoses within the same modality or subcategory. By z-scoring the AUC values, we aimed to delineate
whether certain diagnoses are associated with unique biological and/or psychosocial alterations or if
they re�ect broader deviations across multiple domains of biological and/or psychosocial functioning.
This approach allowed a comparison of how pain-associated diagnoses are characterized by distinct or
overlapping biological and psychosocial pro�les.

The deviance explained by biological factors, psychosocial factors, and their unions in classifying two
distinct chronic pain conditions - rheumatoid arthritis and �bromyalgia - was assessed using the optimal
biological modalities for each condition, determined by the highest average AUC scores: blood for
rheumatoid arthritis and brain for �bromyalgia. These calculations were then compared with the
deviance explained in models of self-reported chronic pain, employing the same biological modalities for
comparability.

The deviance explained ( ) by the biological (B), psychosocial (P), and combined (B + P) predictors
was calculated following a modi�ed approach based on the methodology outlined by Dinga et al. 2020,
adapted to our context of comparing different types of predictive information rather than controlling for
confounds12. First, predicted probabilities were extracted from models trained on: biological predictions
(B) from the blood or brain models, psychosocial predictions from the models trained on psychosocial
data (P), and combined data (B + P) integrating both biological and psychosocial predictions.

Logistic regression models were then �t on these predicted probabilities to predict each speci�ed
outcome (either the diagnosis or self-reported chronic pain), generating:

A model using only predicted probabilities from biological data (B).

A model using only predicted probabilities from psychosocial data (P).

A model using combined predicted probabilities from both data sources (B + P).

The deviance for each predictive model was then calculated using the following formula:

D
2

Deviance = 2 × (loglikelihoodsaturated − loglikelihoodmodel)
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Where the saturated model represents a model with perfect �t to the data and the maximum possible
log-likelihood. Subsequently, the fraction of deviance explained ( ) for each model was derived by
normalizing the model's deviance against that of a null model, which includes only an intercept,
according to:

To dissect the deviance explained into unique and shared contributions, the following calculations were
performed:

 : The unique contribution of psychosocial predictions beyond what is
explained by biological predictions.

 : The unique contribution of biological predictions beyond what is explained by
psychosocial predictions.

 : The shared or overlapping contribution of biological and
psychosocial predictions to the explained deviance.

Where , ,  are deviance explained of models containing biological and psychosocial
predictions, biological predictions, and psychosocial predictions, respectively. These results quantify the
extent to which biological and psychosocial factors individually and jointly explain the variance in the
binary disease or self-reported pain outcome and are displayed in Fig. 1D.

Nociplastic Functional Signature (NFS)
We developed a predictive resting-state functional signature for nociplastic pain conditions within the UK
Biobank cohort at the 9-year follow-up. Based on established literature, we identi�ed diagnoses
categorically de�ned as nociplastic conditions, which included �bromyalgia, chronic fatigue syndrome,
and widespread chronic pain15,16,17. Nociplastic conditions are believed to be mechanistically linked to
central sensitization or alterations in central nervous system processing of pain leading to symptoms
such as diffuse pain, fatigue, sleep disturbances, and cognitive impairments16,18,19.

To develop the Nociplastic Functional Signature (NFS), we combined �bromyalgia, chronic widespread
pain, and chronic fatigue syndrome into a single nociplastic condition (n = 535) and entered them into
our machine learning pipeline to differentiate from diagnosis-free participants based on resting-state
functional connectivity data. Structure coe�cients were then derived from the predictive model to create
the signature. These coe�cients highlight the connectivity patterns most predictive of the nociplastic
condition, and are described below:

Structure coe�cients

Given the potential instability and bias in feature weights derived from multivariate predictive models, we
utilized structure coe�cients, or model encoding maps, to identify features individually linked to the
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outputs of our predictive machine learning models20. Structure coe�cients, recognized in brain imaging
and predictive modeling research21,22, provide a means to extract reliable features associated with a
predicted outcome. Speci�cally, these coe�cients reveal the individual association of features—in this
case the Dynamic Conditional Connectivity (DCC) between two brain regions of interest (ROIs)—with the
model's output—in this case the predicted probability of a nociplastic pain condition—thereby mapping
individual features to the overall multivariate model prediction.

For each participant, structure coe�cient maps were generated by computing the covariance between
the predicted probabilities from the logistic regression model and the parcel-wise DCC values. This
process created an encoding map delineating the directionality of the relationship between each feature
and the model prediction. In our analysis, this method maps which brain voxels were positively or
negatively associated with the predicted nociplastic condition. For all predictive models, structure
coe�cient maps were calculated for each of the �ve iterations of the machine learning pipeline and
subsequently averaged.

Measuring functional dysconnectivity in nociplastic conditions: Structure coe�cient maps, derived from
models individually trained to predict �bromyalgia, widespread chronic pain, chronic fatigue syndrome,
were correlated using two-sided Pearson's coe�cients, with signi�cance levels adjusted for multiple
comparisons using the Bonferroni method. To highlight key cortical regions involved in each condition,
these maps were node-averaged and thresholded to identify the top 25% of absolute coe�cient values
and visualized on cortical surface renderings. It is important to note that the correlation analyses
between condition coe�cients utilized the complete, unthresholded coe�cient vectors, which included
both subcortical and brainstem areas. However, the visual representations focused solely on the top 25%
of coe�cients within cortical regions of interest (ROIs) as shown in Fig. 3B. The same approach was
taken to visualize the NFS in Fig. 3C. Surface rendering was performed using the Surf Ice software,
available at https://www.nitrc.org/projects/sur�ce/.

Validation of the NFS

The NFS was validated in four external datasets available in the OpenPain repository. These datasets
were merged to form a validation cohort of 250 participants, allowing for an evaluation of the NFS's
generalizability in classifying chronic pain. This performance was then benchmarked against the Tonic
Pain Signature (ToPS), a previously validated marker for sustained experimental pain23. ToPS weights
were applied to the participant-level DCC data (brainnetome atlas parcellation) in the OpenPain dataset
across various thresholds (100%, 50%, 25%, 10%, 5%, 1%, 0.5%) to test for generalizability. The same
thresholding procedure was employed with the NFS to establish its performance within the OpenPain
dataset. For each threshold, we calculated the AUC to differentiate between participants with chronic
pain and pain-free individuals. A null AUC distribution for each threshold was generated by randomizing
the outcome variable across 1,000 permutations and recalculating the AUC (Fig. 3E).

Composite blood assay signature
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A composite blood assay signature capturing the common alterations in blood assay features across
well-predicted diseases was created. Included were 13 diseases for which blood assay models predicted
at a ‘good’ or better performance level (AUC > = .70). This signature was formed by calculating the
average of the structure coe�cients from the predictive models for each of the 13 diseases. The
resulting map represents the direction and magnitude of the 52 blood assay features that are
consistently altered across these conditions (Fig. 2C). The signature could then be transformed into a
subject-level risk score by taking the dot product of the signature and a subjects standardized and de-
confounded blood assay feature pro�le.

Assessment of composite blood assay signature: The blood assay signature was assessed by testing its
ability to predict cross-sectional disease prevalence at baseline and longitudinal disease incidence at
roughly 4 and 9 years in the UKB. First, subject-level signatures were derived by taking the dot product of
the signature coe�cients and each subjects standardized and de-confounded (residualization using age
and sex as confounds) blood assay feature pro�le at baseline. For each of the 13 diseases included in
the risk score, subjects were divided into 3 case groups: 1) disease present at baseline 2) disease onset
at 4 year visit 3) disease onset at 9 year visit. Similarly, 3 control groups were created 1) diagnosis-free at
baseline 2) diagnosis free at 4 year visit 3) diagnosis free at 9 year visit. Each case group was matched
with its respective control pairing and effect size estimates were calculated between the risk scores for
the pairs using Cohens d (95% con�dence interval derived from 1,000 bootstrap iterations) and AUC
scores for discrimination performance. Importantly, the control group within each timepoint analysis
remained the same across diseases (Fig. 2B).

The signature was also evaluated on a pooled diagnoses phenotype, where subjects with any of the 13
diagnoses were aggregated into a single disease group at each timepoint. The pooled diagnosis group
was then compared to its timepoint-matched control group to calculate effect sizes, using the same
methodology as described previously for the individual diagnosis (Fig. 2D).

Disease progression analysis

We analyzed repeated blood assay data from the 4-year follow-up (n = 19,360) to measure signature
evolution over time. The composite signature coe�cients were applied to the repeat blood assay data,
yielding a follow-up signature. This analysis included the three diagnosis case groups (e.g., disease
present at baseline, disease onset at 4 year, disease onset at 9 year) to examine signature dynamics
across varying disease progression stages relative to control subjects with no diagnoses at follow-up.
We employed a linear mixed effects model to analyze changes in the signature from baseline to follow-
up, incorporating �xed effects for time, disease group, and their interaction, and accounted for individual
variability by considering participants as a random effect. We used Bonferroni correction to assess the
signi�cance of group-time interaction terms for signature changes between each disease group and
healthy controls (Fig. 2E).

Validation of composite blood assay signature
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Validation in the All of Us Research Program (AoU)

In the All of Us Research Program (AoU), a simpli�ed version of the composite blood signature was
developed to �t the program's available assays, resulting in a simpli�ed signature with 10 retained
assays detailed in Supplementary Table 1. This validation involved de�ning pain-diagnosis and control
groups through curated ICD-10-CM codes within the AoU's Dataset and Cohort Builders, selecting
individuals based on their recorded diagnoses of the 13 conditions relevant to the original signature.
Healthy controls were de�ned as participants without in�ammatory, musculoskeletal, or cardiovascular
diagnoses. We applied this sparse signature to AoU participant blood assay pro�les, adjusting for age
and sex, to create participant-level sparse signatures. The effectiveness of this simpli�ed signature was
quanti�ed using Cohen’s d effect sizes and AUC scores, derived from comparisons across individual
diagnosis groups and controls, incorporating 95% con�dence intervals from 1,000 bootstrap iterations
(Fig. 2E & F).

Biological and psychosocial risk scores
For the blood, brain, and bone modalities, we identi�ed diagnoses with su�cient classi�cation accuracy,
de�ned by AUC values greater than approximately 0.70. Only one disease was predicted 0.70 AUC or
greater using the polygenic risk score modality, so it was excluded from this analysis. This approach
yielded 13 diagnoses for the blood modality, 5 for the brain, and 4 for the bone. Within each modality, we
generated biological and psychosocial risk scores for both diagnosed participants and diagnosis-free
controls. These scores were calculated by averaging the log-transformed predicted probabilities from the
respective disease prediction models. For instance, in the brain modality, for participants diagnosed with
any of multiple sclerosis, stroke, �bromyalgia, chronic fatigue syndrome, or cervical spondylosis, we
averaged the predicted probabilities from each brain model to establish a common biological risk score.
Similarly, we computed a common psychosocial risk score by averaging the predicted probabilities from
the psychosocial models for these conditions. In each modality group, participants were sorted into
quintiles based on their biological and psychosocial risk scores, categorizing them into �ve risk levels:
Low, Reduced, Neutral, Elevated, or High (Fig. 5A).

Biopsychosocial synergy in disease

In the blood modality analysis, we computed odds ratios for each of the 13 diagnoses independently
against diagnosis-free controls. We determined the odds ratio using the unconditional maximum
likelihood estimate, comparing the odds for participants within a speci�c quintile (e.g., ‘Low’) to those of
all other participants in the cohort. This approach aimed to quantify the likelihood of having a speci�c
condition (e.g., gout) based on a participant's placement in each of the biological and psychosocial risk
quintiles. Next, we calculated odds ratios for each diagnosis based on combinations of biological and
psychosocial quintiles, assessing the likelihood of a diagnosis for participants categorized within both
'Low' biological and psychosocial quintiles (LL), 'Reduced' (RR), and so forth, up to the 'High' (HH)
combination (Fig. 5A).
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Logarithmic odds ratios were computed for pooled (combined) diagnoses within each modality, covering
all 25 possible combinations of biological and psychosocial risk quintiles. For each modality, Cohen's d
effect sizes were also calculated, comparing common risk scores for each diagnosis against scores
from diagnosis-free individuals (Fig. 5B, C, D).

Longitudinal analysis of biopsychosocial synergy

Within the blood modality, we analyzed the onset of pooled diagnoses at the 4-year follow-up based on
baseline biopsychosocial risk quintiles. We calculated log-odds ratios for each of the 25 combinations of
baseline biological and psychosocial risk quintiles, comparing those with new onset diagnoses (n = 
1,006) at follow-up to those who remained diagnosis-free (n = 1,282), as presented in Fig. 5F.

The incidence of a diagnosis within a 15-year period following baseline assessment was analyzed
across four groups categorized by their baseline biological and psychosocial risk quintiles: Low–Low,
High–Low, Low–High, and High–High. Kaplan–Meier curves were employed to visualize the time to
diagnosis across these groups. Additionally, Cox proportional hazards models provided hazard ratios
and p-values, while log-rank tests were applied to identify signi�cant differences in the hazard rates,
particularly comparing the High–High and Low–High groups (Fig. 5G). Survival analyses we’re
conducted using the lifelines package in Python.

Biopsychosocial chronic pain pathway
A structural equation model (SEM) was employed to investigate the relationships between biological and
psychosocial markers and their effects on the development of rheumatoid arthritis and subsequent pain
outcomes. Logarithmic predicted probabilities derived from the blood and psychosocial models of
rheumatoid arthritis served as baseline biological and psychosocial risk indicators. An interaction term
for the biopsychosocial interface was derived by multiplying these biological and psychosocial risks.

Pain outcomes were measured using the UK Biobank’s online pain questionnaire, which assessed pain
across three dimensions:

1. Pain Impact: Assessed with the Brief Pain Inventory (BPI-39), the functional impact of pain was
evaluated across seven areas: general activity, mood, walking ability, work, interpersonal relations,
sleep, and life enjoyment, each on a scale from 0 (no interference) to 10 (complete interference).
This measure was speci�cally targeted at participants reporting chronic pain at particular body
sites.24

2. Pain Spread: The extent of pain was quanti�ed by asking participants if they experienced pain or
discomfort persistently or intermittently over more than 3 months, followed by specifying the body
sites affected in the last three months. A summative phenotype representing the spread of pain was
created based on the number of reported pain sites.

3. Pain Intensity: Chronic pain sufferers were prompted to rate their most bothersome pain at its worst
in the past 24 hours on a scale from 0 (no pain) to 10 (pain as severe as imaginable).
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The model speci�cation was delineated as follows: rheumatoid arthritis development was modeled as a
function of blood risk, psychosocial risk, and their interaction, while pain outcomes were modeled as a
function of rheumatoid arthritis development, blood, and psychosocial risk. Model �tting involved
estimating parameters that best re�ected the covariances among the observed variables. The �t of the
model was assessed using standard indices, including the Comparative Fit Index (CFI), Root Mean
Square Error of Approximation (RMSEA), and the Standardized Root Mean Square Residual (SRMR), to
evaluate how well the model represented the data structure (Fig. 6). SEM were constructed using
semopy.

Extended data
Biological ampli�cation in pain spreading

We derived biological signatures from models predicting the number of self-reported pain sites, ranging
from 1 to 4 or more, utilizing structure coe�cients from predictive models. In blood modality analyses,
we derived structure coe�cients for each model to reveal blood assay signature similarity as pain
increases in spread. For brain modality studies, we node-averaged the structure coe�cients from
resting-state connectivity data and visualized the top 25% of absolute values on cortical surfaces. In the
bone modality, we averaged coe�cients related to bone density, mineral content, and area across
different skeletal regions—including the spine, femur, head, legs, pelvis, arms, and ribs. In genetic
analyses, we identi�ed the top 5% FDR-corrected Neuro-Immune Gene Ontology (NIGO) pathways from
each PRS model speci�c to the number of pain sites and categorized these pathways into biological
processes using REVIGO (Extended Data Fig. 3)25.

Cross-prediction models

Cross-prediction models were employed wherein models initially trained to classify speci�c diagnoses
were tested on alternative diagnoses they were not originally trained to identify. We extracted ROC-AUC
scores, sensitivity, and speci�city from these cross-prediction tasks. Sensitivity and speci�city scores
were averaged for each original diagnosis across predicted alternative diagnoses within both biological
and psychosocial modalities (Extended Data Fig. 6).

Impact of medication use on the composite blood assay signature

To assess medication impact on the blood assay signature, we considered 11 medication families linked
to the 13 diagnoses comprising the signature (Extended Data Fig. 7). A network model mapped chi-
squared associations between diagnoses and medication families, with edge betweenness clustering
identifying diagnosis-medication clusters (Extended Data Fig. 7).

We then recalculated effect sizes and discrimination metrics for the signature, excluding patients taking
individual medication families. For instance, statistics were re-evaluated after excluding patients on
antiepileptic drugs (ATC code: N03A). This exclusion was systematically applied to each medication
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class to assess the signature's predictive accuracy devoid of medication in�uences (Extended Data
Fig. 7).

Statistical analysis
Data pre-processing and statistical analyses were performed using Python v.3.8 (including Numpy
(v.1.22.0), Pandas (v.1.4.3), Scipy (v.1.10.1), Sklearn (v.1.3.2), Nilearn (v.0.10.0), Lifelines (v.0.26.4),
Semopy (v.2.3.9), and SnapML (v.1.9.1)). Nested �ve-fold cross-validation was used to obtain unbiased
model performance results. Permutation tests (with 1,000 iterations) were used to test whether the
associations by Pearson’s r correlation were signi�cantly higher than a null association. We used
bootstrap resampling with 1,000 iterations to indicate the estimated error in the Cohen’s d and ROC-AUC
effect sizes. In all analyses, signi�cance was based on P < 0.05 for single testing and Bonferonni < 0.05
for multiple testing. Further details of the statistical methods are speci�ed in each relevant section
above.
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Code availability
Detailed and annotated code will be available at GitHub (https://github.com/EVPlab). The medication
classi�cation performed by Wu et al.34 can be found in supplementary data from the original article

(https://www.nature.com/articles/s41467-019-09572-5). Code to extract the ToPS by Lee et al.23 can be
found online (https://cocoanlab.github.io/tops/).
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Figure 1

Classifying pain-associated diagnoses using biological and psychosocial modalities. A. Schematic
illustrating the study work�ow. B. Top: Barplots presenting the prevalence of chronic pain across 35 pain-
associated diagnoses, categorized by the number of self-reported pain sites, and ordered by overall
chronic pain prevalence. Above: Counts of diagnoses at baseline (black) and 9-year follow-up (grey).
Bottom: A heatmap displaying the prevalence of pain sites for each diagnosis, normalized (z-score)
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across conditions for each speci�c site. The diagnosis-free control group is labeled in light grey for both
plots. C.Barplots display the performance of models in classifying pain diagnoses in the test set, with
error bars indicating the 95% con�dence interval estimated from 1,000 bootstrap samples over 5
iterations of 5-fold Cross-Validation (CV). The bars represent the highest ROC-AUC scores achieved
using biological (left) and psychosocial (right) modalities. The colors of the bars show the modality
obtaining the highest AUC. Bubble heatmaps show ROC-AUC scores for modality subcategories, where
applicable; bubble color indicates the absolute AUC score, and size re�ects the z-score of the AUC
relative to other diagnoses within a given modality or subcategory. Only diagnoses with z-scores above
zero, indicating performance above the group mean AUC, are shown. For clearer visualization, diagnoses
are grouped by their best biological modality performance (i.e. highest AUC score) into four categories,
from Poor [0.60 - 0.65 AUC) to Excellent (0.75+ AUC). D. The scatterplot shows the comparison of AUC
scores between the best biological and psychosocial modalities for each pain diagnosis, with points
colored according to the best biological modality and labeled by diagnosis. Point size re�ects the
absolute AUC score difference, highlighting the discrimination discrepancy between biological and
psychosocial factors for each diagnosis. Adjacent Venn diagrams depict unique and shared deviance
explained (D2 ) in example pain diagnosis prediction (e.g., Rheumatoid arthritis & Fibromyalgia) and self-
reported chronic pain prediction by the best biological (left circle) and psychosocial modality (right
circle), with overlaps shown in the center. Corresponding stacked barplots convey the same information,
with each segment color-coded by modality. Ha, headache; F, facial; N/S, neck or shoulder; S/A, stomach
or abdominal; B, back; Hp, hip; K, knee; PAO, pain all over; COPD, chronic obstructive pulmonary disease,
IBS, irritable bowel syndrome; PRS, polygenic risk score.



Page 36/43

Figure 2

Deriving and validating a composite blood assay signature of pain-associated conditions. A. Above:
Schematic illustrating the development of a composite blood assay-based signature derived from
structure coe�cients associated with 13 pain-related diagnoses. Below: Timeline and sample sizes from
UK Biobank (UKB) data points utilized in the signature assessment. B. The composite signature's
diagnostic and prognostic e�cacy for predicting 13 diagnoses is depicted using Cohen’s d and ROC-
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AUC, comparing diagnosed individuals to those diagnosis-free and individuals who develop a diagnosis
to those staying diagnosis-free. Diagnostic accuracy is determined at the signature measurement time
(baseline visit), while prognostic evaluations are conducted for individuals developing diagnoses within 4
and 9 years post-signature measurement. Error bars represent the 95% con�dence interval estimated
from 1,000 bootstrap samples. C. Circular graph depicting the composite signature's structure. The
outermost layer shows a heatmap of blood marker coe�cients composing the composite signature.
Middle layers present individual diagnosis marker coe�cients, sorted by performance and numbered as
in B. Inner layers display the standard deviation of marker coe�cients across diagnoses. The graph is
divided into three sections representing the blood assay subcategories: in�ammatory/immune,
metabolic, and hematological.  D. Pooled effect sizes from C, measured by Cohen's d, are calculated by
comparing subjects diagnosed with any of the 13 diagnoses at baseline or developing a diagnosis at 4
or 9 years, against subjects who are diagnosis-free at baseline or remain diagnosis-free, respectively. E.
The temporal changes in the predictive signature is quanti�ed by comparing baseline and 4-year follow-
up values among participants with a persistent diagnosis from baseline (Ongoing Dx), those who
develop a diagnosis by the 4-year follow-up (4-year onset), those who develop a diagnosis by the 9-year
follow-up (9-year onset), and those remaining diagnosis-free at the 4-year mark (Stay Dx-free). The
signi�cance of signature change between each group and the Stay Dx-free control group were estimated
using linear mixed effects models, with adjustments for multiple comparisons using Bonferroni
correction (Pbonf. < 0.05). Error bars represent the 95% con�dence interval, estimated from 1,000
bootstrap samples. F, A simpli�ed model featuring the top 10 assays, selected based on their absolute
structure coe�cients from the composite signature, was developed and validated using data from the All
of Us Research Program. G, The discriminatory power of the simpli�ed model was quanti�ed using
Cohen’s d and ROC-AUC values, with error bars indicating the 95% con�dence interval calculated from
1,000 bootstrap samples. In�ammatory/Immune markers: CRP, C-reactive protein; Neut, neutrophil; WBC,
white blood cell; Mono, monocyte; Eos, eosinophil; baso, Basophil; Lymph, lymphocyte Metabolic
markers: GGT, gamma glutamyl transferase; Cys C, cystatin C; TG, triglyceride; ALP, alkaline phosphatase;
UA, uric acid; HbA1c, glycated hemoglobin, Glu, glucose; ALT, alanine aminotransferase; AST, aspartate
aminotransferase; Cr, creatinine; TP, total protein; Testo, testosterone; Ca, Calcium; ApoB, apolipoprotein
b; TBil, total bilirubin; IGF1, insulin-like growth factor; LDL-C, low density lipoprotein cholesterol; Alb,
Albumin; TC, total cholesterol Hematological markers: HLR, high light scatter reticulocyte percentage;
Retic, reticulocyte; IRF, immature reticulocyte fraction; RDW, red blood cell distribution width; PCT, platelet
count; PLT, platelet count; PDW, platelet distribution width; nRBC; nucleated red blood cell; SCV, sphered
cell volume; MPV, mean platelet volume; Hct, hematocrit; Hgb, hemoglobin; Dx, diagnosis; UKBB, UK
Biobank; AoU, All of Us Research Program.
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Figure 3

Deriving and validating a multivariate functional connectivity signature of nociplastic pain. A. Schematic
describing the steps implemented to develop the nociplastic functional signature (NFS). Venn diagram
shows the sample sizes and sample overlap among the three nociplastic conditions—Fibromyalgia,
Chronic Fatigue Syndrome, and Chronic Widespread Pain—used to derive a combined nociplastic pain
phenotype (n = 535). Barplots show ROC-AUC results from models trained on brain imaging modalities to
classify this phenotype, with error bars denoting the 95% con�dence intervals from 1,000 bootstrap
samples over 5 iterations of 5-fold cross validation. B. Top: Donut plots display the proportions of
positive versus negative structure coe�cients from models predicting the component nociplastic
conditions, based on resting-state functional Magnetic Resonance Imaging (rsfMRI) data. Bottom:
Cortical surface renderings visualize connectivity, thresholded to highlight the top 25% of structure
coe�cients, which represent the sum of dynamic conditional correlation across brain parcels. Arrows
interlinking the cortical renderings depict the association (two-sided Pearson correlation, all P < 0.05
Bonferroni corrected) between the complete unthresholded vectors of structure coe�cients (parcel to
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parcel connectivity) for the respective conditions. C. Visualization of nociplastic signature connectivity,
thresholded to emphasize the top 25% of structure coe�cients that denote the sum of dynamic
conditional correlations across brain parcels. D. Circos plot illustrating the top 10% of connectivity links
(represented by structure coe�cients) that constitute the nociplastic signature from the resting-state
fMRI model, mapped across the canonical resting-state networks. E. Validation of the resting-state fMRI
nociplastic signature (NFS) in four aggregated external cohorts from the OpenPain repository (n = 250),
benchmarked against a pre-validated neural signature of capsaicin-induced sustained pain (Tonic Pain
Signature, ToPS). Performance in discriminating pain vs pain-free groups across various densities of
NFS and ToPS within the OpenPain cohorts is depicted in the plot to the right along with the standard
deviation band of a null classi�cation model generated from 10,000 permutations of the NFS. Nocip,
Nociplastic; T1, T1 structural brain imaging; DWI, Diffusion Weighted Imaging; fMRI, function Magnetic
Resonance Imaging; All combines the features from the T1, DWI, and fMRI brain imaging modalities;
dlPFC, dorso-lateral prefrontal cortex; S1, primary somatosensory cortex; S2, secondary somatosensory
cortex.

Figure 4

Classifying chronic pain phenotypes using biological and psychosocial modalities. B. Anatomical body
map of chronic pain sites and their counts for the full (baseline) sample and for individuals with a follow-
up visit 9 years later. C. Performance of machine learning models in classifying participants reporting
acute (light blue) and chronic (dark blue) pain from pain-free in left out test sets (nchronic = 2,679-42,985;
nacute 1,012-16,259), shown via Area under the curve of the receiver operating characteristic (ROC-AUC)
scores. Error bars show 95% CI from 1,000 bootstrap samples of 5 iterations of 5-fold cross-validation
(25 total AUC scores). Also included are heritability estimates from Genome Wide Association Studies
(GWAS) for both acute and chronic pain types. D. Left: Body map of chronic pain sites. Right: Barplots
grouped by modality, showing machine learning model performance in distinguishing subjects with
speci�c pain sites from pain-free controls in the same manner as C. E. Left: Body map showing
aggregation of chronic pain sites to depict a phenotype based on the number of self-reported pain sites
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(i.e., anatomical pain spread), ranging from 1 to 4 or more distinct sites. Right: Violin plots by modality
show test set performance (ROC-AUC) of models classifying chronic pain spread versus pain-free.
Beneath: Barplots indicate the frequency of each pain spread phenotype in modality-speci�c models.
IBS, irritable bowel syndrome; Dx, diagnosis; UKBB, UK Biobank; Ha, headache; F, facial; N/S, neck or
shoulder; S/A, stomach or abdominal; B, back; Hp, hip; K, knee; PAO, pain all over; PRS, polygenic risk
score; * denotes a Bonferroni-corrected P-value of less than 0.05.

Figure 5

Assessing biopsychosocial synergy in the prognosis of pain-associated medical conditions. A. Overview
of the development of diagnosis risk strati�cation models based on pooled probabilities from biological
(blood, brain, bone) and psychosocial modalities. (i) Biological and psychosocial risk scores were
segmented into quantiles for strati�cation. (ii) A Sankey diagram visualizes the possible combinations
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blood and psychosocial risk quintiles; this operation is similarly conducted for bone and brain risk
models. B,Top: Diagnosis-associated odds ratios for each diagnosis are computed for participants
within each risk quantile of blood assay risk scores, psychosocial risk scores, and combined risk scores,
in comparison to all other participants. Bottom: The odds ratios are transformed to log-odds to elucidate
the protective effect associated with lower risk quantiles. C, The performance of the pooled risk scores
for each diagnosis was measured against diagnosis-free participants using Cohen's d effect size. The
heatmap displays the log-odds ratios of having a diagnosis across all risk quintile combinations,
highlighting the synergistic impact of high combined biological and psychosocial risks and the protective
effects conferred by lower combined risks. The analysis performed in C was replicated for diagnoses
most accurately classi�ed by the brain (D) and bone (E) modalities. F, Log-odds ratios depict the synergy
between blood assay biomarkers and psychosocial factors in disease prognosis 4 years later. G, Kaplan-
Meier curves show the cumulative incidence of receiving a diagnosis up to 15 years following baseline,
segregated into four groups according to combinations of blood and psychosocial risk quantiles (High-
High, High-Low, Low-High, and Low-Low). Hazard ratios are calculated using Cox proportional hazard
models, while the P value of the differences between groups is calculated using a two-sided log-rank
test. H, Barplots plots illustrate the association between biological and psychosocial risk scores for
blood (left), bone (top right), and brain (bottom right) risks with categories of pain site spread (ranging
from 1 to 4+ sites) The R² values indicate the strength of these associations, as determined by
Spearman's rank correlation; (* indicates p < 0.001).
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Figure 6

A holistic biopsychosocial framework for the development of chronic pain. A framework for the
development of chronic pain over time is depicted through a data-driven structural equation model
utilizing longitudinal data. Baseline biological risk is calculated using a blood risk score for rheumatoid
arthritis, derived from 52 blood markers encompassing in�ammatory and immune, metabolic, and
hematological assays. Baseline psychosocial risk is quanti�ed using a psychosocial risk score for
rheumatoid arthritis, derived from 90 pain-agnostic features that include mental, physical, and
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sociodemographic factors. Pain diagnosis denotes the onset of healthcare diagnosed rheumatoid
arthritis between the initial risk assessment and the online follow-up pain questionnaire roughly 10 years
later. Pain outcomes encompass the interference of chronic pain across several dimensions (pain
impact), the count of self-reported chronic pain sites (pain spread), and the rating of the worst pain in the
last 24 hours (pain intensity) at the online pain questionnaire. Arrows are labeled with regression
coe�cients derived from the structural equation modeling. Arrows are only drawn for signi�cant
associations. *P < 0.0001; Bootstrap (1,000 iterations) tests were used for signi�cance testing of
regression coe�cients.
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