Anjum, N.A., Umar, S., Iqbal, M., 2014. Assessment of cadmium accumulation, toxicity, and tolerance in Brassicaceae and Fabaceae plants-implications for phytoremediation. Environ. Sci. Pollut. Res., 21(17): 10286-10293. https://doi.org/10.1007/s11356-014-2889-5
Antoniadis V., Levizou E., Shaheen S.M., et al, 2017. Trace elements in the soil-plant interface: Phytoavailability, translocation, and phytoremediation-A review. Earth-Sci. Rev., 171: 621-645. https://doi.org/10.1016/j.earscirev.2017.06.005
Attinti, R., Barrett, K.R., Datta R, et al, 2017. Ethylenediaminedisuccinic acid (EDDS) enhances phytoextraction of lead by vetiver grass from contaminated residential soils in a panel study in the field. Environ. Pollut., 225: 524-533. https://doi.org/10.1016/j.envpol.2017.01.088
Ayangbenro, A.S., Babalola, O.O., 2017. A new strategy for heavy metal polluted environments: a review of microbial biosorbents. Int. J. Env. Res. Pub. He., 14: 94. https://doi.org/10.3390/ijerph14010094
Babaeian, E., Homaee, M., Rahnemaie, R., 2016. Chelate-enhanced phytoextraction and phytostabilization of lead-contaminated soils by carrot (Daucus carota). Arch. Agron. Soil Sci., 62(3): 339-358. https://doi.org/10.1080/03650340.2015.1060320
Bárta, J., Šlajsová, P., Tahovská, K., et al, 2014. Different temperature sensitivity and kinetics of soil enzymes indicate seasonal shifts in C, N and P nutrient stoichiometry in acid forest soil. Biogeochemistry, 117: 525-537. https://doi.org/10.1007/s10533-013-9898-1
Begum, Z.A., Rahman, I.M.M., Tate, Y., et al, 2012. Remediation of toxic metal contaminated soil by washing with biodegradable aminopolycarboxylate chelants. Chemosphere, 87: 1161-1170. https://doi.org/10.1016/j.chemosphere.2012.02.032
Borggaard, O.K., Holm, P.E., Strobel, B.W., 2019. Potential of dissolved organic matter (DOM) to extract As, Cd, Co, Cr, Cu, Ni, Pb and Zn from polluted soils: A review. Geoderma, 343: 235-246. https://doi.org/10.1016/j.geoderma.2019.02.041
Cang, L., Zhou, D.M., Wang, Q.Y., et al, 2009. Effects of electrokinetic treatment of a heavy metal contaminated soil on soil enzyme activities. J. Hazard. Mater., 172(2-3): 1602-1607. https://doi.org/10.1016/j.jhazmat.2009.08.033
Dary, M., Chamber-Pérez, M.A., Palomares, A.J., et al, 2010. “In situ” phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria. J. Hazard. Mater., 177(1–3): 323-330. https://doi.org/10.1016/j.jhazmat.2009.12.035
Gao, Y., Miao, C.Y., Xia, J., et al, 2012. Plant diversity reduces the effect of multiple heavy metal pollution on soil enzyme activities and microbial community structure. Front. Env. Sci. Eng., 6: 213-223. https://doi.org/10.1007/s11783-011-0345-z
Han, R., Dai, H.P., Zhan, J., et al, 2019. Clean extracts from accumulator efficiently improved Solanum nigrum L. accumulating Cd and Pb in soil. J. Clean. Prod., 239: 118055. https://doi.org/10.1016/j.jclepro.2019.118055
He, D., Cui, J., Gao, M., et al, 2019. Effects of soil amendments applied on cadmium availability, soil enzyme activity, and plant uptake in contaminated purple soil. Sci. Total Environ., 654: 1364-1371. https://doi.org/10.1016/j.scitotenv.2018.11.059
Hou, D.D., Wang, K., Liu, T., et al, 2017. Unique rhizosphere micro-characteristics facilitate phytoextraction of multiple metals in moil by the hyperaccumulating plant Sedum alfredii. Environ. Sci. Technol., 51: 5675-5684. https://doi.org/10.1021/acs.est.6b06531
Hseu, Z.Y., Jien, S.H., Wang, S.H., et al, 2013. Using EDDS and NTA for enhanced phytoextraction of Cd by water spinach. J. Environ. Manage., 117: 58-64. https://doi.org/10.1016/j.jenvman.2012.12.028
Hu, X.X., Liu, X.Y., Zhang, X.Y., et al, 2017. Increased accumulation of Pb and Cd from contaminated soil with Scirpus triqueter by the combined application of NTA and APG. Chemosphere, 188: 397-402. https://doi.org/10.1016/j.chemosphere.2017.08.173
Huang, D.L., Xu, J.J., Zeng, G.M., et al, 2015. Influence of exogenous lead pollution on enzyme activities and organic matter degradation in the surface of river sediment. Environ. Sci. Pollut. Res., 22(15): 11422-11435. https://doi.org/10.1007/s11356-015-4375-0
Huang, S.P., Jia, X., Zhao, Y.H., et al, 2016. Response of Robinia pseudoacacia L. rhizosphere microenvironment to Cd and Pb contamination and elevated temperature. Appl. Soil. Ecol., 108: 269-277. https://doi.org/10.1016/j.apsoil.2016.09.002
Jones, D.L., Willett, V.B., 2006. Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil. Soil Biol. Biochem., 38: 991-999. https://doi.org/10.1016/j.soilbio.2005.08.012
Khalid, S., Shahid, M., Niazi, N.K., et al, 2017. A comparison of technologies for remediation of heavy metal contaminated soils. J. Geochem. Explor., 182: 247-268. https://doi.org/10.1016/j.gexplo.2016.11.021
Lan, J.C., Zhang, S.R., Lin, H.C., et al, 2013. Efficiency of biodegradable EDDS, NTA and APAM on enhancing the phytoextraction of cadmium by Siegesbeckia orientalis L. grown in Cd-contaminated soils. Chemosphere, 91: 1362-1367. https://doi.org/10.1016/j.chemosphere.2013.01.116
Li, T.Q., Di, Z.Z., Islam, E., et al, 2011. Rhizosphere characteristics of zinc hyperaccumulator Sedum alfredii involved in zinc accumulation. J. Hazard. Mater., 185, 818-823. https://doi.org/10.1016/j.jhazmat.2010.09.093
Li, T.Q., Tao, Q., Han, X., et al, 2013. Effects of elevated CO2 on rhizosphere characteristics of Cd/Zn hyperaccumulator Sedum alfredii. Sci. Total Environ., 454-455: 510-516. https://doi.org/10.1016/j.scitotenv.2013.03.054
Li, Z.Y., Ma, Z.W., Kuijp, T.J.V.D., et al, 2014. A review of soil heavy metal pollution from mines in China: pollution and health risk assessment. Sci. Total Environ., 468-469: 843-853. https://doi.org/10.1016/j.scitotenv.2013.08.090
Lu, M., Xu, K., Chen, J., 2013. Effect of pyrene and cadmium on microbial activity and community structure in soil. Chemosphere, 91: 491-497. https://doi.org/10.1016/j.chemosphere.2012.12.009
Margesin, R., Schinner, F., 2005. Manual of soil analysis—monitoring and assessing soil bioremediation. J. Chem. Phys., 90: 47-96. https://doi.org/10.1063/1.456601
Parelho, C., Rodrigues, A.S., Barreto, M.C., et al, 2016. Assessing microbial activities in metal contaminated agricultural volcanic soils - An integrative approach. Ecotox. Environ. Safe., 129: 242-249. https://doi.org/10.1016/j.ecoenv.2016.03.019
Quartacci, M.F., Irtelli, B., Baker, A.J. M., et al, 2007. The use of NTA and EDDS for enhanced phytoextraction of metals from a multiply contaminated soil by Brassica carinata. Chemosphere, 68: 1920-1928. https://doi.org/10.1016/j.chemosphere.2007.02.058
Saifullah, Shahid, M., Zia-Ur-Rehman, M., et al, 2015. Phytoremediation of Pb-contaminated soils using synthetic chelates. Soil Remediation and Plants: 397-414. In: Khalid RH, Muhanmmad S, Münir Ö, Ahmet RM (eds). Soil remediation and plants. Elsevier, Amsterdam, pp 397-414. https://doi.org/10.1016/B978-0-12-799937-1.00014-0
Sarwar, N., Imran, M., Shaheen, M.R., et al, 2017. Phytoremediation strategies for soils contaminated with heavy metals: modifications and future perspectives. Chemosphere, 171: 710-721. https://doi.org/10.1016/j.chemosphere.2016.12.116
Shahid, M., Pinelli, E., Dumat, C., 2012. Review of Pb availability and toxicity to plants in relation with metal speciation; role of synthetic and natural organic ligands. J. Hazard. Mater., 219-220: 1-12. https://doi.org/10.1016/j.jhazmat.2012.01.060
Shi, W., Ma, X., 2017. Effects of heavy metal Cd pollution on microbial activities in soil. Ann. Agr. Env. Med., 24(4): 722-725. https://doi.org/10.26444/aaem/80920
Tian, H., Fang, L., Duan, C., et al, 2018. Dominant factor affecting Pb speciation and the leaching risk among land-use types around Pb-Zn mine. Geoderma, 326: 123-132. https://doi.org/10.1016/j.geoderma.2018.04.016
Tighe, M., Beidinger, H., Knaub, C., et al, 2019. Risky bismuth: Distinguishing between lead contamination sources in soils. Chemosphere, 234: 297-301. https://doi.org/10.1016/j.chemosphere.2019.06.077
Usman, A.R. A., Almaroai. Y.A., Ahmad. M., et al, 2013. Toxicity of synthetic chelators and metal availability in poultry manure amended Cd, Pb and As contaminated agricultural soil. J. Hazard. Mater., 262: 1022-1030. https://doi.org/10.1016/j.jhazmat.2013.04.032
Vance, E.D., Brookes, P.C., Jenkinson, D.S., 1987. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem., 19: 703-707. https://doi.org/10.1016/0038-0717(87)90052-6
Wang, K., Liu, Y.H., Song, Z.G., et al, 2019. Effects of biodegradable chelator combination on potentially toxic metals leaching efficiency in agricultural soils. Ecotox. Environ. Safe., 182: 109399. https://doi.org/10.1016/j.ecoenv.2019.109399
Xian, Y., Wang, M., Chen, W., 2015. Quantitative assessment on soil enzyme activities of heavy metal contaminated soils with various soil properties. Chemosphere, 139: 604-608. https://doi.org/10.1016/j.chemosphere.2014.12.060
Yang, L., Wang, G., Cheng, Z., et al, 2013. Influence of the application of chelant EDDS on soil enzymatic activity and microbial community structure. J. Hazard. Mater., 262: 561-570. https://doi.org/10.1016/j.jhazmat.2013.09.009
Yu, H.Y., Zhan, J., Zhang, Q.P., et al, 2020. NTA-enhanced Pb remediation efficiency by the phytostabilizer Athyrium wardii (Hook.) and associated Pb leaching risk. Chemosphere, 246: 125815. https://doi.org/10.1016/j.chemosphere.2020.125815
Zhan, J., Li, T.X., Zhang, X.Z., et al, 2018. Rhizosphere characteristics of phytostabilizer Athyrium wardii (Hook.) involved in Cd and Pb accumulation. Ecotox. Environ. Safe., 148: 892-900. https://doi.org/10.1016/j.ecoenv.2017.11.070
Zhan, J., Zhang, Q.P., Li, T.X., et al, 2019. Effects of NTA on Pb phytostabilization efficiency of Athyrium wardii (Hook.) grown in a Pb-contaminated soil. J. Soil. Sediment., 19: 3576-3584. https://doi.org/10.1007/s11368-019-02308-4
Zhang, Q.P., Zhan, J., Yu, H.Y., et al, 2019. Lead accumulation and soil microbial activity in the rhizosphere of the mining and non-mining ecotypes of Athyrium wardii (Hook.) Makino in adaptation to lead-contaminated soils. Environ. Sci. Pollut. Res., 26(32): 32957-32966. https://doi.org/10.1007/s11356-019-06395-1
Zhao, L., Li, T.X., Yu, H.Y., et al, 2016. Effects of [S, S]-ethylenediaminedisuccinic acid and nitrilotriacetic acid on the efficiency of Pb phytostabilization by Athyrium wardii (Hook.) grown in Pb-contaminated soils. J. Environ. Manage., 182: 94-100. https://doi.org/10.1016/j.jenvman.2016.07.042
Zhao, S.L., Jia, L.N., Duo, L., 2013. The use of a biodegradable chelator for enhanced phytoextraction of heavy metals by Festuca arundinacea from municipal solid waste compost and associated heavy metal leaching. Bioresour. Technol., 129: 249-255. https://doi.org/10.1016/j.biortech.2012.11.075
Zhou, H.M., Zhang, D.X., Wang, P., et al, 2017. Changes in microbial biomass and metabolic quotient with biochar addition to agricultural soils: a Meta-analysis. Agr. Ecosyst. Environ., 239: 80-89. https://doi.org/10.1016/j.agee.2017.01.006
Zhu, G.X., Xiao, H.Y., Guo. Q.J., et al, 2018. Heavy metal contents and enrichment characteristics of dominant plants in wasteland of the downstream of a lead-zinc mining area in Guangxi, Southwest China. Ecotox. Environ. Safe., 151: 266-271. https://doi.org/10.1016/j.ecoenv.2018.01.011
Zou, T.J., Li, T.X., Zhang, X.Z., et al, 2011. Lead accumulation and tolerance characteristics of Athyrium wardii (Hook.) as a potential phytostabilizer. J. Hazard. Mater., 186: 683-689. https://doi.org/10.1016/j.jhazmat.2010.11.053