Agata R (2020) Introduction of covariance components in slip inversion of geodetic data following a non-uniform spatial distribution and application to slip deficit rate estimation in the Nankai Trough subduction zone. Geophys J Int 221:1832–1844. https://doi.org/10.1093/gji/ggaa116
Baba S, Takemura S, Obara K, Noda A (2020) Slow earthquakes illuminating interplate coupling heterogeneities in subduction zones. Geophys Res Lett. https://doi.org/10.1029/2020GL088089
Bernardi F, Braunmiller J, Kradolfer U, Giardini D (2004) Automatic regional moment tensor inversion in the European-Mediterranean region. Geophys J Int 157:703–716. https://doi.org/10.1111/j.1365-246X.2004.02215.x
Boore DM (1999) Basin Waves on a Seafloor Recording of the 1990 Upland, California, Earthquake: Implications for Ground Motions from a Larger Earthquake. Bull Seismol Soc Am 89:317–324
Day SM, Graves R, Bielak J, et al (2008) Model for Basin Effects on Long-Period Response Spectra in Southern California. Earthq Spectra 24:257–277. https://doi.org/10.1193/1.2857545
Ekström G, Nettles M, Dziewoński AM (2012) The global CMT project 2004-2010: Centroid-moment tensors for 13,017 earthquakes. Phys Earth Planet Inter 200–201:1–9. https://doi.org/10.1016/j.pepi.2012.04.002
Fukuyama E, Ishida M, Dreger DS, Kawai H (1998) Automated seismic moment tensor determination by using on-line broadband seismic waveforms. Zisin 51:149–156. https://doi.org/10.4294/zisin1948.51.1_149
Furumura M, Furumura T, Wen KL (2001) Numerical simulation of Love wave generation in the Ilan Basin, Taiwan, during the 1999 Chi-Chi earthquake. Geophys Res Lett 28:3385–3388. https://doi.org/10.1029/2001GL013114
Furumura T, Hayakawa T (2007) Anomalous propagation of long-period ground motions recorded in Tokyo during the 23 October 2004 Mw 6.6 Niigata-ken Chuetsu, Japan, earthquake. Bull Seismol Soc Am 97:863–880. https://doi.org/10.1785/0120060166
Furumura T, Hayakawa T, Nakamura M, et al (2008) Development of long-period ground motions from the Nankai trough, Japan, earthquakes: Observations and computer simulation of the 1944 Tonankai (Mw 8.1) and the 2004 SE Off-Kii Peninsula (Mw 7.4) earthquakes. Pure Appl Geophys 165:585–607. https://doi.org/10.1007/s00024-008-0318-8
Gao H, Shen Y (2014) Upper mantle structure of the Cascades from full-wave ambient noise tomography: Evidence for 3D mantle upwelling in the back-arc. Earth Planet Sci Lett 390:222–233. https://doi.org/10.1016/j.epsl.2014.01.012
Gokhberg A, Fichtner A (2016) Full-waveform inversion on heterogeneous HPC systems. Comput Geosci 89:260–268. https://doi.org/10.1016/j.cageo.2015.12.013
Goldstein P, Snoke A (2005) SAC Availability for the IRIS Community. In: Inc. Institutions Seismol. Data Manag. Cent. Electron. Newsl. https://ds.iris.edu/ds/newsletter/vol7/no1/193/sac-availability-for-the-iris-community/
Gomberg J (2018) Cascadia Onshore-Offshore Site Response, Submarine Sediment Mobilization, and Earthquake Recurrence. J Geophys Res Solid Earth 123:1381–1404. https://doi.org/10.1002/2017JB014985
Guo Y, Koketsu K, Miyake H (2016) Propagation mechanism of long-period ground motions for offshore earthquakes along the nankai trough: Effects of the accretionary wedge. Bull Seismol Soc Am 106:1176–1197. https://doi.org/10.1785/0120150315
Headquarters for Earthquake Research Promotion (2017) National seismic hazard maps for Japan. https://www.jishin.go.jp/evaluation/seismic_hazard_map/shm_report/shm_report_2017/
Hejrani B, Tkalčić H (2020) Resolvability of the centroid‐moment‐tensors for shallow seismic sources and improvements from modelling high‐frequency waveforms. J Geophys Res Solid Earth. https://doi.org/10.1029/2020JB019643
Hejrani B, Tkalčić H, Fichtner A (2017) Centroid moment tensor catalogue using a 3-D continental scale Earth model: Application to earthquakes in Papua New Guinea and the Solomon Islands. J Geophys Res Solid Earth 122:5517–5543. https://doi.org/10.1002/2017JB014230
Helffrich G, Wookey J, Bastow I (2013) The Seismic Analysis Code. Cambridge University Press, Cambridge
Helffrich GR (1997) How good are routinely determined focal mechanisms? Empirical statistics based on a comparison of Harvard, USGS and ERI moment tensors. Geophys J Int 131:741–750. https://doi.org/10.1111/j.1365-246X.1997.tb06609.x
Hirose F, Nakajima J, Hasegawa A (2008) Three-dimensional seismic velocity structure and configuration of the Philippine Sea slab in southwestern Japan estimated by double-difference tomography. J Geophys Res Solid Earth 113:1–26. https://doi.org/10.1029/2007JB005274
Ito A, Sugioka H, Obana K, et al (2017a) Upper boundaries of the Pacific and Philippine Sea plates near the triple junction off the Boso Peninsula deduced from ocean-bottom seismic observations. Earth, Planets Sp 69:30. https://doi.org/10.1186/s40623-017-0608-4
Ito A, Tonegawa T, Uchida N, et al (2019) Configuration and structure of the Philippine Sea Plate off Boso, Japan: constraints on the shallow subduction kinematics, seismicity, and slow slip events. Earth, Planets Sp 71:111. https://doi.org/10.1186/s40623-019-1090-y
Ito A, Yamamoto Y, Hino R, et al (2017b) Tomographic image of crust and upper mantle off the Boso Peninsula using data from an ocean ‑ bottom seismograph array. Earth, Planets Sp. https://doi.org/10.1186/s40623-017-0703-6
Iwaki A, Maeda T, Morikawa N, et al (2018) Effects of random 3D upper crustal heterogeneity on long-period (≥ 1 s) ground-motion simulations. Earth, Planets Sp 70:156. https://doi.org/10.1186/s40623-018-0930-5
Kanamori H, Brodsky EE (2004) The physics of earthquakes. Reports Prog Phys 67:1429–1496. https://doi.org/10.1088/0034-4885/67/8/R03
Kaneko Y, Ito Y, Chow B, et al (2019) Ultra‐long Duration of Seismic Ground Motion Arising From a Thick, Low‐Velocity Sedimentary Wedge. J Geophys Res Solid Earth 124:10347–10359. https://doi.org/10.1029/2019JB017795
Kasahara K, Morita Y, Hirata N, et al (2009) Development of the Metropolitan Seismic Observation network ( MeSO-net ) for Detection of Mega-thrust beneath Tokyo Metropolitan Area. Bull Earthq Res Inst Univ Tokyo 2:71–88
Kennett BLN, Fichtner A, Fishwick S, Yoshizawa K (2013) Australian seismological referencemodel (AuSREM): Mantle component. Geophys J Int 192:871–887. https://doi.org/10.1093/gji/ggs065
Kimura T, Murakami H, Matsumoto T (2015) Systematic monitoring of instrumentation health in high-density broadband seismic networks. Earth, Planets Sp 67:55. https://doi.org/10.1186/s40623-015-0226-y
Kinoshita S, Fujiwara H, Mikoshiba T, Hoshino T (1992) Secondary Love waves observed by a strong-motion array in the Tokyo lowlands, Japan. J Phys Earth 40:99–116. https://doi.org/10.4294/jpe1952.40.99
Koketsu K, Kikuchi M (2000) Propagation of seismic ground motion in the Kanto basin, Japan. Science (80- ) 288:1237–1239. https://doi.org/10.1126/science.288.5469.1237
Koketsu K, Miyake H (2008) A seismological overview of long-period ground motion. J Seismol 12:133–143. https://doi.org/10.1007/s10950-007-9080-0
Koketsu K, Miyake H, Afnimar, Tanaka Y (2009) A proposal for a standard procedure of modeling 3-D velocity structures and its application to the Tokyo metropolitan area, Japan. Tectonophysics 472:290–300. https://doi.org/10.1016/j.tecto.2008.05.037
Koketsu K, Miyake H, Suzuki H (2012) Japan Integrated Velocity Structure Model Version 1. Proc 15th World Conf Earthq Eng 1–4
Komatitsch D (2004) Simulations of Ground Motion in the Los Angeles Basin Based upon the Spectral-Element Method. Bull Seismol Soc Am 94:187–206. https://doi.org/10.1785/0120030077
Kubo A, Fukuyama E, Kawai H, Nonomura K (2002) NIED seismic moment tensor catalogue for regional earthquakes around Japan: Quality test and application. Tectonophysics 356:23–48. https://doi.org/10.1016/S0040-1951(02)00375-X
Kuge K, Kawakatsu H (1993) Significance of non-double couple components of deep and intermediate-depth earthquakes: implications from moment tensor inversions of long-period seismic waves. Phys Earth Planet Inter 75:243–266. https://doi.org/10.1016/0031-9201(93)90004-S
Lee S-J, Liang WT, Cheng HW, et al (2013) Towards real-time regional earthquake simulation I: Real-time moment tensor monitoring (RMT) for regional events in Taiwan. Geophys J Int 196:432–446. https://doi.org/10.1093/gji/ggt371
Maeda T, Takemura S, Furumura T (2017) OpenSWPC: an open-source integrated parallel simulation code for modeling seismic wave propagation in 3D heterogeneous viscoelastic media. Earth, Planets Sp 69:102. https://doi.org/10.1186/s40623-017-0687-2
Matsubara M, Obara K (2011) The 2011 off the Pacific coast of Tohoku Earthquake related to a strong velocity gradient with the Pacific plate. Earth, Planets Sp 63:663–667. https://doi.org/10.5047/eps.2011.05.018
Matsubara M, Obara K, Kasahara K (2008) Three-dimensional P- and S-wave velocity structures beneath the Japan Islands obtained by high-density seismic stations by seismic tomography. Tectonophysics 454:86–103. https://doi.org/10.1016/j.tecto.2008.04.016
Miyake H, Koketsu K (2005) Long-period ground motions from a large offshore earthquake: The case of the 2004 off the Kii peninsula earthquake, Japan. Earth, Planets Sp 57:203–207. https://doi.org/10.1186/BF03351816
Miyazawa M (2016) An investigation into the remote triggering of the Oita earthquake by the 2016 Mw 7.0 Kumamoto earthquake using full wavefield simulation. Earth, Planets Sp 68:. https://doi.org/10.1186/s40623-016-0585-z
Miyoshi T, Obayashi M, Peter D, et al (2017) Adjoint tomography of the crust and upper mantle structure beneath the Kanto region using broadband seismograms. Prog Earth Planet Sci 4:29. https://doi.org/10.1186/s40645-017-0143-8
Mukai Y, Furumura T, Maeda T (2018) Causes of Azimuthally Dependent Amplification Variations of Long-period Ground Motions in the Kanto Basin , Central Japan. Bull Earthq Res Inst Univ Tokyo 93:31–48
Nakamura T, Takenaka H, Okamoto T, et al (2015) Long-period ocean-bottom motions in the source areas of large subduction earthquakes. Sci Rep 5:1–2. https://doi.org/10.1038/srep16648
National Research Institute for Earth Science and Disaster Resilience (2019) NIED F-net. In: Natl. Res. Inst. Earth Sci. Disaster Resil. https://doi.org/10.17598/NIED.0005
Oba A, Furumura T, Maeda T (2020) Data Assimilation‐Based Early Forecasting of Long‐Period Ground Motions for Large Earthquakes Along the Nankai Trough. J Geophys Res Solid Earth 125:. https://doi.org/10.1029/2019JB019047
Okada Y, Kasahara K, Hori S, et al (2004) Recent progress of seismic observation networks in Japan —Hi-net, F-net, K-NET and KiK-net—. Earth, Planets Sp 56:xv–xxviii. https://doi.org/10.1186/BF03353076
Okamoto T, Takenaka H, Nakamura T (2018) Evaluation of accuracy of synthetic waveforms for subduction-zone earthquakes by using a land–ocean unified 3D structure model. Earth, Planets Sp 70:. https://doi.org/10.1186/s40623-018-0871-z
Olsen KB, Day SM, Minster JB, et al (2006) Strong shaking in Los Angeles expected from southern San Andreas earthquake. Geophys Res Lett 33:L07305. https://doi.org/10.1029/2005GL025472
Ryoki K (1999) Three-Dimensional Depth Structure of the Crust and Uppermost Mantle beneath Southwestern Japan and Its Regional Gravity Anomalies. Zisin (Journal Seismol Soc Japan 2nd ser) 52:51–63. https://doi.org/10.4294/zisin1948.52.1_51
Sakai S, Hirata N (2009) Distribution of the Metropolitan Seismic Observation network. Bull Earthq Res Inst Tokyo Univ 84:57–69
Shinohara M, Hino R, Yoshizawa T, et al (2005) Hypocenter distribution of plate boundary zone off Fukushima, Japan, derived from ocean bottom seismometer data. Earth, Planets Sp 57:93–105. https://doi.org/10.1186/BF03352553
Stephenson WJ, Reitman NG, Angster SJ (2017) P- and S-wave velocity models incorporating the Cascadia subduction zone for 3D earthquake ground motion simulations, Version 1.6—Update for Open-File Report 2007–1348
Takemura S, Akatsu M, Masuda K, et al (2015) Long-period ground motions in a laterally inhomogeneous large sedimentary basin: observations and model simulations of long-period surface waves in the northern Kanto Basin, Japan. Earth, Planets Sp 67:33. https://doi.org/10.1186/s40623-015-0201-7
Takemura S, Kimura T, Saito T, et al (2018a) Moment tensor inversion of the 2016 southeast offshore Mie earthquake in the Tonankai region using a three-dimensional velocity structure model: effects of the accretionary prism and subducting oceanic plate. Earth, Planets Sp 70:50. https://doi.org/10.1186/s40623-018-0819-3
Takemura S, Kubo H, Tonegawa T, et al (2019a) Modeling of Long-Period Ground Motions in the Nankai Subduction Zone: Model Simulation Using the Accretionary Prism Derived from Oceanfloor Local S-Wave Velocity Structures. Pure Appl Geophys 176:627–647. https://doi.org/10.1007/s00024-018-2013-8
Takemura S, Matsuzawa T, Kimura T, et al (2018b) Centroid Moment Tensor Inversion of Shallow Very Low Frequency Earthquakes Off the Kii Peninsula, Japan, Using a Three-Dimensional Velocity Structure Model. Geophys Res Lett 45:6450–6458. https://doi.org/10.1029/2018GL078455
Takemura S, Matsuzawa T, Noda A, et al (2019b) Structural Characteristics of the Nankai Trough Shallow Plate Boundary Inferred From Shallow Very Low Frequency Earthquakes. Geophys Res Lett 46:4192–4201. https://doi.org/10.1029/2019GL082448
Takemura S, Okuwaki R, Kubota T, et al (2020) Centroid moment tensor inversions of offshore earthquakes using a three-dimensional velocity structure model: slip distributions on the plate boundary along the Nankai Trough. Geophys J Int 222:1109–1125. https://doi.org/10.1093/gji/ggaa238
Takemura S, Shiomi K, Kimura T, Saito T (2016) Systematic difference between first-motion and waveform-inversion solutions for shallow offshore earthquakes due to a low-angle dipping slab. Earth, Planets Sp 68:149. https://doi.org/10.1186/s40623-016-0527-9
Takemura S, Shiomi K, Obara K (2019c) 3D simulation of seismic wave propagation during the MJMA 6.3 Hyuga-nada earthquake occurred on 10 May 2019. Rep Coord Comm Earthq Predict Japan 102:320–325
Tape C, Liu Q, Maggi A, Tromp J (2009) Adjoint tomography of the southern california crust. Science (80- ) 325:988–992. https://doi.org/10.1126/science.1175298
Vallée M, Charléty J, Ferreira AMG, et al (2011) SCARDEC: A new technique for the rapid determination of seismic moment magnitude, focal mechanism and source time functions for large earthquakes using body-wave deconvolution. Geophys J Int 184:338–358. https://doi.org/10.1111/j.1365-246X.2010.04836.x
Wang X, Zhan Z (2020) Moving from 1-D to 3-D velocity model: automated waveform-based earthquake moment tensor inversion in the Los Angeles region. Geophys J Int 220:218–234. https://doi.org/10.1093/gji/ggz435
Wessel P, Smith WHF, Scharroo R, et al (2013) Generic mapping tools: Improved version released. Eos (Washington DC) 94:409–410. https://doi.org/10.1002/2013EO450001
Wirth EA, Vidale JE, Frankel AD, et al (2019) Source‐Dependent Amplification of Earthquake Ground Motions in Deep Sedimentary Basins. Geophys Res Lett 46:6443–6450. https://doi.org/10.1029/2019GL082474
Yoshimoto K, Takemura S (2014) A study on the predominant period of long-period ground motions in the Kanto Basin, Japan. Earth, Planets Sp 66:100. https://doi.org/10.1186/1880-5981-66-100