1 Kuiken, T. et al. Host species barriers to influenza virus infections. Science 312, 394-397, doi:10.1126/science.1122818 (2006).
2 Parrish, C. R. et al. Cross-species virus transmission and the emergence of new epidemic diseases. Microbiol. Mol. Biol. Rev. 72, 457-470, doi:10.1128/mmbr.00004-08 (2008).
3 Taubenberger, J. K. & Kash, J. C. Influenza virus evolution, host adaptation, and pandemic formation. Cell Host Microbe 7, 440-451, doi:10.1016/j.chom.2010.05.009 (2010).
4 Lipsitch, M. et al. Viral factors in influenza pandemic risk assessment. Elife 5, doi:10.7554/eLife.18491 (2016).
5 Long, J. S., Mistry, B., Haslam, S. M. & Barclay, W. S. Host and viral determinants of influenza A virus species specificity. Nat. Rev. Microbiol. 17, 67-81, doi:10.1038/s41579-018-0115-z (2019).
6 Smith, G. J. et al. Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic. Nature 459, 1122-1125, doi:10.1038/nature08182 (2009).
7 WHO. Influenza—Avian and other zoonotic influenza 2020, <https://www.who.int/influenza/human_animal_interface/en/> (2020).
8 Pensaert, M., Ottis, K., Vandeputte, J., Kaplan, M. M. & Bachmann, P. A. Evidence for the natural transmission of influenza A virus from wild ducts to swine and its potential importance for man. Bull. World Health Organ. 59, 75-78 (1981).
9 Brown, I. H. History and epidemiology of Swine influenza in Europe. Curr Top Microbiol. Immunol. 370, 133-146, doi:10.1007/82_2011_194 (2013).
10 Krumbholz, A. et al. Origin of the European avian-like swine influenza viruses. J. Gen. Virol. 95, 2372-2376, doi:10.1099/vir.0.068569-0 (2014).
11 Joseph, U., Vijaykrishna, D., Smith, G. J. D. & Su, Y. C. F. Adaptive evolution during the establishment of European avian-like H1N1 influenza A virus in swine. Evol. Appl. 11, 534-546, doi:10.1111/eva.12536 (2018).
12 Vijaykrishna, D. et al. Long-term evolution and transmission dynamics of swine influenza A virus. Nature 473, 519-522, doi:10.1038/nature10004 (2011).
13 Yang, H. et al. Prevalence, genetics, and transmissibility in ferrets of Eurasian avian-like H1N1 swine influenza viruses. Proc. Natl. Acad. Sci. USA 113, 392-397, doi:10.1073/pnas.1522643113 (2016).
14 Henritzi, D. et al. Surveillance of European Domestic Pig Populations Identifies an Emerging Reservoir of Potentially Zoonotic Swine Influenza A Viruses. Cell Host Microbe 28, 614-627.e616, doi:10.1016/j.chom.2020.07.006 (2020).
15 Dornfeld, D., Petric, P. P., Hassan, E., Zell, R. & Schwemmle, M. Eurasian Avian-Like Swine Influenza A Viruses Escape Human MxA Restriction through Distinct Mutations in Their Nucleoprotein. J. Virol. 93, doi:10.1128/JVI.00997-18 (2019).
16 Sun, H. et al. Prevalent Eurasian avian-like H1N1 swine influenza virus with 2009 pandemic viral genes facilitating human infection. Proc. Natl. Acad. Sci. USA 117, 17204-17210, doi:10.1073/pnas.1921186117 (2020).
17 Thornton, J. W., Need, E. & Crews, D. Resurrecting the ancestral steroid receptor: ancient origin of estrogen signaling. Science 301, 1714-1717, doi:10.1126/science.1086185 (2003).
18 Ducatez, M. F. et al. Feasibility of reconstructed ancestral H5N1 influenza viruses for cross-clade protective vaccine development. Proc. Natl. Acad. Sci. USA 108, 349-354, doi:10.1073/pnas.1012457108 (2011).
19 Rogers, G. N. & Paulson, J. C. Receptor determinants of human and animal influenza virus isolates: differences in receptor specificity of the H3 hemagglutinin based on species of origin. Virology 127, 361-373, doi:10.1016/0042-6822(83)90150-2 (1983).
20 Baumann, J., Kouassi, N. M., Foni, E., Klenk, H. D. & Matrosovich, M. H1N1 Swine Influenza Viruses Differ from Avian Precursors by a Higher pH Optimum of Membrane Fusion. J. Virol. 90, 1569-1577, doi:10.1128/JVI.02332-15 (2016).
21 Russier, M. et al. H1N1 influenza viruses varying widely in hemagglutinin stability transmit efficiently from swine to swine and to ferrets. PLoS Pathog. 13, e1006276, doi:10.1371/journal.ppat.1006276 (2017).
22 Pleschka, S. et al. A plasmid-based reverse genetics system for influenza A virus. J. Virol. 70, 4188-4192, doi:10.1128/JVI.70.6.4188-4192.1996 (1996).
23 Salomon, R. et al. The polymerase complex genes contribute to the high virulence of the human H5N1 influenza virus isolate A/Vietnam/1203/04. J. Exp. Med. 203, 689-697, doi:10.1084/jem.20051938 (2006).
24 Thornton, J. W. Resurrecting ancient genes: experimental analysis of extinct molecules. Nat. Rev. Genet. 5, 366-375, doi:10.1038/nrg1324 (2004).
25 Giles, B. M. & Ross, T. M. A computationally optimized broadly reactive antigen (COBRA) based H5N1 VLP vaccine elicits broadly reactive antibodies in mice and ferrets. Vaccine 29, 3043-3054, doi:10.1016/j.vaccine.2011.01.100 (2011).
26 Shi, Y., Wu, Y., Zhang, W., Qi, J. & Gao, G. F. Enabling the 'host jump': structural determinants of receptor-binding specificity in influenza A viruses. Nat. Rev. Microbiol. 12, 822-831, doi:10.1038/nrmicro3362 (2014).
27 Matrosovich, M. et al. Early alterations of the receptor-binding properties of H1, H2, and H3 avian influenza virus hemagglutinins after their introduction into mammals. J. Virol. 74, 8502-8512, doi:10.1128/jvi.74.18.8502-8512.2000 (2000).
28 Taubenberger, J. K. & Morens, D. M. The 1918 Influenza Pandemic and Its Legacy. Cold Spring Harb. Perspect. Med. 10, doi:10.1101/cshperspect.a038695 (2020).
29 Reid, A. H., Fanning, T. G., Janczewski, T. A., Lourens, R. M. & Taubenberger, J. K. Novel origin of the 1918 pandemic influenza virus nucleoprotein gene. J. Virol. 78, 12462-12470, doi:10.1128/jvi.78.22.12462-12470.2004 (2004).
30 Davey, J., Dimmock, N. J. & Colman, A. Identification of the sequence responsible for the nuclear accumulation of the influenza virus nucleoprotein in Xenopus oocytes. Cell 40, 667-675, doi:10.1016/0092-8674(85)90215-6 (1985).
31 Wang, P., Palese, P. & O'Neill, R. E. The NPI-1/NPI-3 (karyopherin alpha) binding site on the influenza a virus nucleoprotein NP is a nonconventional nuclear localization signal. J. Virol. 71, 1850-1856, doi:10.1128/jvi.71.3.1850-1856.1997 (1997).
32 Weber, F., Kochs, G., Gruber, S. & Haller, O. A classical bipartite nuclear localization signal on Thogoto and influenza A virus nucleoproteins. Virology 250, 9-18, doi:10.1006/viro.1998.9329 (1998).
33 Ye, Q., Krug, R. M. & Tao, Y. J. The mechanism by which influenza A virus nucleoprotein forms oligomers and binds RNA. Nature 444, 1078-1082, doi:10.1038/nature05379 (2006).
34 Gabriel, G. et al. Differential use of importin-α isoforms governs cell tropism and host adaptation of influenza virus. Nat. Commun. 2, 156, doi:10.1038/ncomms1158 (2011).
35 Zimmermann, P., Mänz, B., Haller, O., Schwemmle, M. & Kochs, G. The viral nucleoprotein determines Mx sensitivity of influenza A viruses. J. Virol. 85, 8133-8140, doi:10.1128/jvi.00712-11 (2011).
36 Mänz, B. et al. Pandemic influenza A viruses escape from restriction by human MxA through adaptive mutations in the nucleoprotein. PLoS Pathog. 9, e1003279, doi:10.1371/journal.ppat.1003279 (2013).
37 Ashenberg, O., Padmakumar, J., Doud, M. B. & Bloom, J. D. Deep mutational scanning identifies sites in influenza nucleoprotein that affect viral inhibition by MxA. PLoS Pathog. 13, e1006288, doi:10.1371/journal.ppat.1006288 (2017).
38 Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312-1313, doi:10.1093/bioinformatics/btu033 (2014).
39 Finnigan, G. C., Hanson-Smith, V., Stevens, T. H. & Thornton, J. W. Evolution of increased complexity in a molecular machine. Nature 481, 360-364, doi:10.1038/nature10724 (2012).
40 Tamuri, A. U. Treesub: annotating ancestral substitution on a tree.Available at: https://github.com/tamuri/treesub (2013) (Accessed June 12, 2018).
41 Stech, J. et al. Rapid and reliable universal cloning of influenza A virus genes by target-primed plasmid amplification. Nucleic Acids Res. 36, e139, doi:10.1093/nar/gkn646 (2008).
42 Hoffmann, E., Neumann, G., Kawaoka, Y., Hobom, G. & Webster, R. G. A DNA transfection system for generation of influenza A virus from eight plasmids. Proc. Natl. Acad. Sci. USA 97, 6108-6113, doi:10.1073/pnas.100133697 (2000).
43 Su, W. et al. Testing the Effect of Internal Genes Derived from a Wild-Bird-Origin H9N2 Influenza A Virus on the Pathogenicity of an A/H7N9 Virus. Cell Rep. 12, 1831-1841, doi:10.1016/j.celrep.2015.08.029 (2015).
44 Van Poucke, S. G., Nicholls, J. M., Nauwynck, H. J. & Van Reeth, K. Replication of avian, human and swine influenza viruses in porcine respiratory explants and association with sialic acid distribution. Virol. J. 7, 38, doi:10.1186/1743-422X-7-38 (2010).
45 Chan, R. W. et al. Infection of swine ex vivo tissues with avian viruses including H7N9 and correlation with glycomic analysis. Influenza Other Respir. Viruses 7, 1269-1282, doi:10.1111/irv.12144 (2013).
46 Chan, L. L. Y. et al. Evaluation of the human adaptation of influenza A/H7N9 virus in PB2 protein using human and swine respiratory tract explant cultures. Sci. Rep. 6, 35401, doi:10.1038/srep35401 (2016).
47 Hoffmann, E., Neumann, G., Hobom, G., Webster, R. G. & Kawaoka, Y. "Ambisense" approach for the generation of influenza A virus: vRNA and mRNA synthesis from one template. Virology 267, 310-317, doi:10.1006/viro.1999.0140 (2000).
48 Moncorge, O. et al. Investigation of influenza virus polymerase activity in pig cells. J. Virol. 87, 384-394, doi:10.1128/JVI.01633-12 (2013).
49 Katoh, K., Misawa, K., Kuma, K. & Miyata, T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059-3066, doi:10.1093/nar/gkf436 (2002).
50 M. A. Miller, W. P., T. Schwartz. in Gateway Computing Environments Workshop. Vol. 23 1-8 (IEEE, New Orleans, LA, USA, 2010).
51 Bruinsma, S. et al. Bead-linked transposomes enable a normalization-free workflow for NGS library preparation. BMC Genomics 19, 722, doi:10.1186/s12864-018-5096-9 (2018).
52 Yen, H.-L. et al. Hemagglutinin–neuraminidase balance confers respiratory-droplet transmissibility of the pandemic H1N1 influenza virus in ferrets. Proc. Natl. Acad. Sci. USA 108, 14264-14269, doi:10.1073/pnas.1111000108 (2011).
53 Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676-682, doi:10.1038/nmeth.2019 (2012).