1 Mosselman, C. & Dekker, H. Enthalpies of Formation of N-Alkan-1-Ols. J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases 71 (0), 417– 424 (1975).
2 Jouny, M., Luc, W. & Jiao F. General Techno-Economic Analysis of CO2 Electrolysis Systems. Ind. Eng. Chem. Res. 57 (6), 2165– 2177 (2018).
3 Li, C., Ciston, J. & Kanan, M. Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper. Nature 508, 504–507 (2014).
4 Klabunde, J., Bischoff, C. & Papa, A. Propanols. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley: 1– 14, (2018).
5 Jouny, M., Luc, W. & Jiao, F. High-rate electroreduction of carbon monoxide to multi-carbon products. Nat. Catal. 1, 748-755 (2018).
6 Jouny, M., Hutchings, G.S. & Jiao, F. Carbon monoxide electroreduction as an emerging platform for carbon utilization. Nat. Catal. 2, 1062-1070 (2019).
7 Siler, J., Khan, S., Ip, A.H., Schreiber, M.W., Jaffer, S.A., Bobicki, E.R., Dinh, C.-T., & Sargent, E.H. Etylene electrosynthesis: a comparative techno-economic analysis of alkaline vs membrane electrode assembly vs CO2-CO-C2H4. ACS Energy Lett. 6, 3, 997–1002 (2021).
8 Cuellar, R.N.S, Scherer, C., Kaçkar, B., Eisenreich, W., Huber, C., Wiesner-Fleischer, K., Fleischer, M., Hinrichsen, O. Two-step electrochemical reduction of CO2 towards multi-carbon products at high current densities. J. CO2 util. 36, 263, 220 (2020).
9 Wang, L., Nitopi, S., Wong, A.B., Snider, J.L., Nielander, A.C., Morales-Guio, C.G., Orazov, M., Higgins, D.C., Hahn, C., & Jaramillo, T. Electrochemically converting carbon monoxide to liquid fuels by directing selectivity with electrode surface area. Nat. Catal. 2, 702-708 (2019).
10 Kim, J.Y., Sellers, C., Hao, S. et al. Different distributions of multi-carbon products in CO2 and CO electroreduction under practical reaction conditions. Nat. Catal. 6, 1115–1124 (2023).
11 Xu, Q., Garg, S., Moss, A.B. et al. Identifying and alleviating the durability challenges in membrane-electrode-assembly devices for high-rate CO electrolysis. Nat. Catal. 6, 1042–1051 (2023).
12 Li, J., Wang, Z., McCallum, C. et al. Constraining CO coverage on copper promotes high-efficiency ethylene electroproduction. Nat. Catal. 2, 1124–1131 (2019).
13 Jin, J., Wicks, J., Min, Q. et al. Constrained C2 adsorbate orientation enables CO-to-acetate electroreduction. Nature 617, 724–729 (2023).
14 Ji, Y., Chen, Z., Wei, R. et al. Selective CO-to-acetate electroreduction via intermediate adsorption tuning on ordered Cu–Pd sites. Nat Catal 5, 251–258 (2022).
15 Luc, W., Fu, X., Shi, J. et al. Two-dimensional copper nanosheets for electrochemical reduction of carbon monoxide to acetate. Nat. Catal. 2, 423–430 (2019)
16 Zhu, P., Xia, C., Liu, C.-Y., Jiang, K., Gao, G., Zhang, X., Xia, Y., Lei, Y., Husam, L. N. A., Senftle, T.P. & Wang, H. Direct and continuous generation of pure acetic acid solutions via electrocatalytic carbon monoxide reduction. PNAS 118, 1-10 (2021).
17 Li, J., Che, F., Pang, Y. et al. Copper adparticle enabled selective electrosynthesis of n-propanol. Nat. Commun. 9, 4614 (2018).
18 Pang, Y., Li, J., Wang, Z. et al. Efficient electrocatalytic conversion of carbon monoxide to propanol using fragmented copper. Nat. Catal. 2, 251–258 (2019).
19 Zhuang, T.T., Pang, Y., Liang, Z.Q. et al. Copper nanocavities confine intermediates for efficient electrosynthesis of C3 alcohol fuels from carbon monoxide. Nat Catal 1, 946–951 (2018).
20 Wang, X., Ou, P., Ozden, A. et al. Efficient electrosynthesis of n-propanol from carbon monoxide using a Ag–Ru–Cu catalyst. Nat. Energy 7, 170–176 (2022).
21 Duong, H.P., Rivera de la Cruz, J.G., Tran, N.-H. et al. Silver and Copper Nitride Cooperate for CO Electroreduction to Propanol. Angew. Chem. Int. Ed. 62, e202310788 (2023).
22 Guo, S., Liu, Y., Huang, Y., Wang, H., Murphy, E., Delafontaine, L., Chen, J., Zenyuk, I.V. & Atanassov, P. Promoting Electrolysis of Carbon Monoxide toward Acetate and 1-Propanol in Flow Electrolyzer. ACS Energy Lett. 8, 2, 935–942 (2023).
23 Raciti, D. et al. Low-Overpotential Electroreduction of Carbon Monoxide Using Copper Nanowires. ACS Catal. 7, 4467–4472 (2017).
24 Wang, X., Wang, Z., Zhuang, TT. et al. Efficient upgrading of CO to C3 fuel using asymmetric C-C coupling active sites. Nat. Commun. 10, 5186 (2019).
25 Schouten, K.J.P., Qin, Z., Pérez Gallent, E. & Koper, M.T.M. Two Pathways for the Formation of Ethylene in CO Reduction on Single-Crystal Copper Electrodes. J. Am. Chem. Soc. 134 (24), 9864-9867 (2012).
26 Schouten, K.J.P., Pérez Gallent, E. & Koper, M.T.M. Structure Sensitivity of the Electrochemical Reduction of Carbon Monoxide on Copper Single Crystals. ACS Catalysis 3 (6), 1292-1295 (2013).
27 You, F., Xi, S., Ying Ho, J.J., Calle-Vallejo, F. & Yeo, B.S. Influence of Copper Sites with Different Coordination on the Adsorption and Electroreduction of CO2 and CO. ACS Catalysis 13 (16), 11136-11143 (2023).
28 De Gregorio, G.L., Burdyny, T., Loiudice, A., Iyengar, P., Smith, W.A. & Buonsanti, R. Facet-Dependent Selectivity of Cu Catalysts in Electrochemical CO2 Reduction at Commercially Viable Current Densities. ACS Catalysis 10 (9), 4854-4862 (2020).
29 Bertheussen, E. et al. Acetaldehyde as an Intermediate in the Electroreduction of Carbon Monoxide to Ethanol on Oxide-Derived Copper. Angew. Chem. Int. Ed. 55, 1450 –1454, (2016).
30 Qiao, Y., Hochfilzer, D., Kibsgaard, J., Chorkendorff, I. & Seger, B. Real-Time Detection of Acetaldehyde in Electrochemical CO Reduction on Cu Single Crystals. ACS Energy Letters 9 (3), 880-887, (2024).
31 Nitopi, S., Bertheussen, E., Scott, S.B. et al. Progress and Perspectives of Electrochemical CO2 Reduction on Copper in Aqueous Electrolyte. Chemical Reviews 119 (12), 7610-7672, (2019).
32 da Silva, A.H.M., Lenne, Q., Vos, R.E. & Koper, M.T.M. Competition of CO and Acetaldehyde Adsorption and Reduction on Copper Electrodes and Its Impact on n-Propanol Formation. ACS Catalysis 13 (7), 4339-4347 (2023).
33 Wei, P., Gao, D., Liu, T. et al. Coverage-driven selectivity switch from ethylene to acetate in high-rate CO2/CO electrolysis. Nat. Nanotechnol. 18, 299–306 (2023).
34 Verdaguer-Casadevall, A.; Li, C. W.; Johansson, T. P.; Scott, S. B.; McKeown, J. T.; Kumar, M.; Stephens, I. E.; Kanan, M. W.; Chorkendorff, I. Probing the Active Surface Sites for CO Reduction on Oxide-Derived Copper Electrocatalysts. J. Am. Chem. Soc. 137, 9808– 9811 (2015).
35 Feng, X., Jiang, K., Fan, S. & Kanan, M.W. A Direct Grain-Boundary-Activity Correlation for CO Electroreduction on Cu Nanoparticles. ACS Central Science 2 (3), 169-174 (2016).
36 Rahaman, M., Dutta, A., Zanetti,A. & Broekmann, P. Electrochemical Reduction of CO2 into Multicarbon Alcohols on Activated Cu Mesh Catalysts: An Identical Location (IL) Study. ACS Catalysis 7 (11), 7946-7956 (2017).
37 Mariano, R.G., McKelvey, K., White,H.S., Kanan, M.W. Selective increase in CO2 electroreduction activity at grain-boundary surface terminations. Science 358, 1187–1192 (2017).
38 Khorshidi, A., Violet, J., Hashemi, J. et al. How strain can break the scaling relations of catalysis. Nat Catal 1, 263–268 (2018).
39 Mavrikakis, M., Hammer,B., & Nørskov, J. K., Effect of Strain on the Reactivity of Metal Surfaces. Phys. Rev. Lett. 81, 2819-2822 (1998).
40 Ma, W., Xie, S., Zhang, B. et al. Copper lattice tension boosts full-cell CO electrolysis to multi-carbon olefins and oxygenates. Chem 9, 2161–2177 (2023).
41 Atlan, C., Chatelier, C., Martens, I. et al. Imaging the strain evolution of a platinum nanoparticle under electrochemical control. Nat. Mater. 22, 754–761 (2023).
42 He, T., Wang, W., Shi, F. et al. Mastering the surface strain of platinum catalysts for efficient electrocatalysis. Nature 598, 76–81 (2021).
43 Escudero-Escribano, M., Malacrida, P., Hansen, M.H., Vej-Hansen, U. G., Velázquez-Palenzuela, A., Tripkovic, V., Schiøtz, J., Rossmeisl, J., Stephens, I. E. & Chorkendorff, I. Tuning the activity of Pt alloy electrocatalysts by means of the lanthanide contraction. Science 352, 73–76 (2016).
44 Behler, J. Atom-centered symmetry functions for constructing high-dimensional neural network potentials. J. Chem. Phys. 134, 074106 (2011).
45 Cheng, D., Zhao, ZJ., Zhang, G. et al. The nature of active sites for carbon dioxide electroreduction over oxide-derived copper catalysts. Nat Commun 12, 395 (2021).
46 Peng, HJ., Tang, M.T., Halldin Stenlid, J. et al. Trends in oxygenate/hydrocarbon selectivity for electrochemical CO2 reduction to C2 products. Nat Commun 13, 1399 (2022).
47 Strach, M. et al. Insights into Reaction Intermediates to Predict Synthetic Pathways for Shape-Controlled Metal Nanocrystals. J. Am. Chem. Soc. 141, 41, 16312–16322 (2019).
48 Mantella, V. et al. Polymer lamellae as reaction intermediates in the formation of copper nanospheres as evidenced by in situ X-ray studies. Angew. Int. Chem. Ed. Engl. 59, 11627–11633 (2020).
49 https://er-c.org/index.php/software/stem-data-analysis/gpa/ - accessed January 25 (2024).
50 Du, H. GPA – geometrical phase analysis software, (2018).
51 Hÿtch, M. J., Snoeck, E. & Kilaas, R. Ultramicroscopy. 74, 131–146 (1998).
52 B. Ravel & M. Newville, ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT, J. of Synchr. Rad. 12, 537–541 (2005).
53 M. Newville, An Analysis Package For XAFS And Related Spectroscopies. Journal of Physics: Conference Series 430, 012007 (2013).
54 Thompson, A.P., Aktulga, H.M., Berger, R. et al. LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comp. Phys. Comm. 271, 108171-108205 (2022).
55 Singraber, A., Morawietz, T., Behler, J. & Dellago, C. Parallel Multistream Training of High-Dimensional Neural Network Potentials. J. Chem. Theory Comput. 15 (5), 3075-3092 (2019).
56 Singraber, A., Behler, J. & Dellago, C. Library-Based LAMMPS Implementation of High-Dimensional Neural Network Potentials. J. Chem. Theory Comput. 15, 3, 1827–1840 (2019).
57 Lian, Z., Dattila, F. & López, N. Stability and lifetime of diffusion-trapped oxygen in oxide-derived copper CO2 reduction electrocatalysts. Nat Catal 7, 401–411 (2024).
58 Martí, C., Blanck, S., Staub, R., Loehlé, S., Michel, C. & Steinmann, S.N. DockOnSurf: A Python Code for the High-Throughput Screening of Flexible Molecules Adsorbed on Surfaces. J. Chem. Info. Mod. 61 (7), 3386-3396 (2021).
59 Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mat. Sci. 6, 1, 15-50 (1996).
60 Kresse, G. & Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169, (1996).
61 Perdew, J.P., Burke, K. & Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 78, 1396 (1997).
62 Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 15, 1769-1897, (2006).
63 Bučko, T., Hafner, J., Lebègue, S. & Ángyán, J.G. Improved Description of the Structure of Molecular and Layered Crystals: Ab Initio DFT Calculations with van der Waals Corrections. J. Phys. Chem. A 114, 43, 11814–11824, (2010).
64 Almora-Barrios, N., Carchini, G., Błoński, P. & López, N. Costless Derivation of Dispersion Coefficients for Metal Surfaces. J. Chem. Theory Comput. 10, 11, 5002–5009, (2014).
65 Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 50, 17953, (1994)
66 Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758, (1999).
67 Monkhorst, H.J. & Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188, (1976).
68 Makov, G. & Payne. M. C. Periodic boundary conditions in ab initio calculations. Phys. Rev. B 51, 4014, (1995).
69 Nørskov, J.K., Rossmeisl, J., Logadottir, A., Lindqvist, L., Kitchin, J.R., Bligaard, T. & Jónsson, H. Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode. J. Phys. Chem. B 108, 46, 17886–17892, (2004).
70 Peterson, A.A., Abild-Pedersen, F., Studt, F., Rossmeisla, J. & Nørskov, J.K. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 3, 1311-1315, (2010).
71 Álvarez-Moreno, M. et al. Managing the Computational Chemistry Big Data Problem: The ioChem-BD Platform. J. Chem. Inf. Model. 55, 95-103, (2015).