Literature search and study characteristics
Finally, 3,467 potentially relevant published works were identified (997 in PubMed, 27 in the Cochrane library, 855 in Embase, 696 in Scopus, and 889 in Web of Science). Of these, duplicates (1,959) and works not related to cancer and rs1799794 polymorphism (1,451) were excluded. Then 23 of these studies were excluded after reviewing full texts. The remaining 37 works (43 studies) were included in this meta-analysis [40-76]. Because two studies in Auranen et al. (2005) were duplicated in Quaye et al. (2009), we only extracted data from these studies from Auranen et al. (2005) to avoid duplication; thus, one article included four studies [66], and three articles included two studies each [68, 70, 71]. The flow chart of the literature selection process is shown in Figure 1.
There were a total of 23,537 cases and 30,649 controls in these 37 works, and 3 were conducted among Arabians [40, 48, 55], 14 among Asians [41, 42, 45-47, 49, 50, 53, 54, 56, 58, 59, 66, 67], and 24 among Caucasians [43, 44, 51, 52, 57, 60-62, 64, 66, 69-76]; 2 were conducted among mixed populations [63, 65]. In addition, in terms of cancer type, ovarian cancer (n = 4) [40, 62, 70], acute lymphoblastic leukemia (n = 3) [41, 52, 57], breast cancer (n = 13) [44, 48, 49, 55, 61, 66, 68, 73, 75], thyroid cancer (n = 4) [42, 46, 47, 67], bladder cancer (n = 4) [45, 63, 65, 69], lung cancer (n = 3) [53, 59, 72], and other cancer (hepatocellular cancer, leiomyoma, nasopharyngeal carcinoma, osteosarcoma, oral cancer, glioma, head and neck cancer, myeloma, endometrial cancer, colorectal adenoma, melanoma skin cancer) [43, 50, 51, 54, 56, 58, 60, 64, 71, 74, 76] were studied. The basic information of each study is presented in Table 1. And we took sensitivity analysis for studies that do not conform to HWE.
Meta-analysis and subgroup analyses
The value of I2 in the five genetic models was greater than 25%, and PQ < 0.10, so pooled ORs for the five genetic models were calculated with a random effects model. There was no obvious correlation between rs1799794 and cancer risk (PZ > 0.05; Table 2).
Subgroup analyses were then performed based on cancer type, ethnicity, detection method, the publication year, source of control, and sample size to investigate sources of heterogeneity (Table 3). In the subgroup analysis based on cancer type, a significantly increased risk for thyroid cancer was observed in the five models (G vs. A: OR = 1.27, 95% CI = 1.01–1.61, I2 = 71.2%; GG+AG vs. AA: OR = 1.36, 95% CI = 1.15–1.61, I2 = 55.4%; GG vs. AA+AG: OR = 1.38, 95% CI = 1.09–1.75, I2 = 29.8%; GG vs. AA: OR = 1.50, 95% CI = 1.17–1.93, I2 = 45.7%; AG vs. AA: OR = 1.27, 95% CI = 1.05–1.53, I2 = 33.2%), a significantly increased risk for breast cancer was found in the heterozygous model (OR = 1.08, 95% CI = 1.02–1.13, I2 = 42.3%), and a decreased risk for ovarian cancer was found in the recessive model and homozygous model (GG vs. AA+AG: OR = 0.69, 95% CI = 0.51–0.93, I2 = 0.0%; GG vs. AA: OR = 0.71, 95% CI = 0.53–0.96, I2 = 0.0%).
In the subgroup analysis based on ethnicity, rs1799794 was associated with increased cancer risk in the Caucasian population according to the heterozygous model (AG vs. AA: OR = 1.05, 95% CI = 1.01–1.10, I2 = 0.0%). In the subgroup analysis based on source of control, we found a significantly increased risk for PB (population based) in the dominant model and heterozygous model (GG+AG vs. AA: OR = 1.06, 95% CI = 1.01–1.12, I2 = 0.0%; AG vs. AA: OR = 1.09, 95% CI = 1.03–1.15, I2 = 0.0%). In the subgroup analysis based on detection method, sequencing was associated with a significantly increased cancer risk in the allele model, dominant model, and heterozygous model (G vs. A: OR = 2.60, 95% CI = 1.37–4.94, I2 = 0.0%; GG+AG vs. AA: OR = 4.00, 95% CI = 1.82–8.80, I2 = 0.0%; AG vs. AA: OR = 4.00, 95% CI = 1.79–8.94, I2 = 0.0%). In the subgroup analysis based on sample size, AG carriers were 2.82 times more likely to develop cancer than AA carriers (95% CI = 1.42–5.57, PZ = 0.003). In the subgroup analysis based on the publication year, studies published before 2010 showed that AG carriers were 1.05 times more likely to develop cancer than AA carriers (95% CI = 1.00–1.10, PZ = 0.047).
Publication bias
The shape of the funnel plots (Figure 2) and Egger’s test (allele: P = 0.108, dominant: P = 0.177, recessive: P = 0.240, homozygous: P = 0.132, heterozygous: P = 0.177) showed no publication bias.
Sensitivity analysis
Eight studies [41, 42, 48-50, 53, 54, 56] had PHWE < 0.05, but for two studies [51, 63] PHWE was not available. We compared the combined results before and after excluding these 10 studies and there were slight changes in the results. When the subgroup analysis was performed according to cancer type, there were no significant associations between rs1799794 polymorphism and increased risk for thyroid cancer in the recessive model, homozygous model, or heterozygous model (GG vs. AA+AG: OR = 1.16, 95% CI = 0.87–1.55, I2 = 0.0%; GG vs. AA: OR = 1.24, 95% CI = 0.90–1.69, I2 = 0.0%; AG vs. AA: OR = 1.22, 95% CI = 0.98–1.51, I2 = 49.4%), and rs3116496 was related to a decreased risk for lung cancer in the five models (A vs. G: OR = 0.80, 95% CI = 0.70–0.92, I2 = 18.1%; GG+AG vs. AA: OR = 0.76, 95% CI = 0.62–0.93, I2 = 4.9%; GG vs. AA+AG: OR = 0.75, 95% CI = 0.59–0.96, I2 = 0.0%; GG vs. AA: OR = 0.65, 95% CI = 0.49–0.87, I2 = 0.0%; AG vs. AA: OR = 0.80, 95% CI = 0.64–0.99, I2 = 0.0%); no changes were observed for the other cancers. No significant changes were found in the subgroup analyses by ethnicity and source of control.