1 Wu, Z. & McGoogan, J. M. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72314 Cases From the Chinese Center for Disease Control and Prevention. JAMA 323, 1239-1242, doi:10.1001/jama.2020.2648 (2020).
2 Gu, S. X. et al. Thrombocytopathy and endotheliopathy: crucial contributors to COVID-19 thromboinflammation. Nature reviews. Cardiology, doi:10.1038/s41569-020-00469-1 (2020).
3 Zhou, F. et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet, doi:10.1016/S0140-6736(20)30566-3 (2020).
4 Liao, D. et al. Haematological characteristics and risk factors in the classification and prognosis evaluation of COVID-19: a retrospective cohort study. Lancet Haematol, doi:10.1016/S2352-3026(20)30217-9 (2020).
5 Shah, S. et al. Elevated D-Dimer Levels are Associated with Increased Risk of Mortality in COVID-19: A Systematic Review and Meta-Analysis. Cardiol. Rev., doi:10.1097/CRD.0000000000000330 (2020).
6 Tang, N., Li, D., Wang, X. & Sun, Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. Journal of thrombosis and haemostasis : JTH 18, 844-847, doi:10.1111/jth.14768 (2020).
7 Guan, W. J. et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 382, 1708-1720, doi:10.1056/NEJMoa2002032 (2020).
8 Manne, B. K. et al. Platelet Gene Expression and Function in COVID-19 Patients. Blood, doi:10.1182/blood.2020007214 (2020).
9 Goshua, G. et al. Endotheliopathy in COVID-19-associated coagulopathy: evidence from a single-centre, cross-sectional study. Lancet Haematol 7, e575-e582, doi:10.1016/S2352-3026(20)30216-7 (2020).
10 Merad, M. & Martin, J. C. Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages. Nature reviews. Immunology 20, 355-362, doi:10.1038/s41577-020-0331-4 (2020).
11 Middleton, E. A. et al. Neutrophil Extracellular Traps (NETs) Contribute to Immunothrombosis in COVID-19 Acute Respiratory Distress Syndrome. Blood, doi:10.1182/blood.2020007008 (2020).
12 Ackermann, M. et al. Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19. N. Engl. J. Med. 383, 120-128, doi:10.1056/NEJMoa2015432 (2020).
13 Wichmann, D. et al. Autopsy Findings and Venous Thromboembolism in Patients With COVID-19: A Prospective Cohort Study. Ann. Intern. Med. 173, 268-277, doi:10.7326/M20-2003 (2020).
14 Warkentin, T. E. & Kaatz, S. COVID-19 versus HIT hypercoagulability. Thromb. Res. 196, 38-51, doi:10.1016/j.thromres.2020.08.017 (2020).
15 Arepally, G. M. Heparin-induced thrombocytopenia. Blood 129, 2864-2872, doi:10.1182/blood-2016-11-709873 (2017).
16 Suh, J. S., Malik, M. I., Aster, R. H. & Visentin, G. P. Characterization of the humoral immune response in heparin-induced thrombocytopenia. Am. J. Hematol. 54, 196-201, doi:10.1002/(SICI)1096-8652(199703)54:3<196::AID-AJH4>3.0.CO;2-R [pii] (1997).
17 Kelton, J. G. et al. Heparin-induced thrombocytopenia: laboratory studies. Blood 72, 925-930 (1988).
18 Rauova, L. et al. Monocyte-bound PF4 in the pathogenesis of heparin-induced thrombocytopenia. Blood 116, 5021-5031, doi:10.1182/blood-2010-03-276964 (2010).
19 Perdomo, J. et al. Neutrophil activation and NETosis are the major drivers of thrombosis in heparin-induced thrombocytopenia. Nature communications 10, 1322, doi:10.1038/s41467-019-09160-7 (2019).
20 Cines, D. B., Tomaski, A. & Tannenbaum, S. Immune endothelial-cell injury in heparin-associated thrombocytopenia. N. Engl. J. Med. 316, 581-589, doi:10.1056/NEJM198703053161004 (1987).
21 Warkentin, T. E., Basciano, P. A., Knopman, J. & Bernstein, R. A. Spontaneous heparin-induced thrombocytopenia syndrome: 2 new cases and a proposal for defining this disorder. Blood 123, 3651-3654, doi:10.1182/blood-2014-01-549741 (2014).
22 Zhu, W. et al. Antibody Cloning Identifies Pathogenic and Non-Pathogenic Antibodies in Heparin-Induced Thrombocytopenia and Defines the Molecular Signatures That Differentiate the Two Types of Antibodies. Blood 134, 439-439, doi:10.1182/blood-2019-126097 (2019).
23 Zhu, W. et al. Polyreactivity and Somatic Hypermutation Analysis Reveals the Innate B Cell Origin of Human PF4/Heparin Reactive Antibodies. Blood 136, 34-35, doi:10.1182/blood-2020-138781 (2020).
24 Brouwer, P. J. M. et al. Potent neutralizing antibodies from COVID-19 patients define multiple targets of vulnerability. Science 369, 643-650, doi:10.1126/science.abc5902 (2020).
25 Robbiani, D. F. et al. Convergent antibody responses to SARS-CoV-2 in convalescent individuals. Nature 584, 437-442, doi:10.1038/s41586-020-2456-9 (2020).
26 Samuelson Bannow, B. T. et al. A prospective, blinded study of a PF4-dependent assay for HIT diagnosis. Blood, doi:10.1182/blood.2020008195 (2020).
27 Zuo, Y. et al. Neutrophil extracellular traps in COVID-19. JCI Insight 5, doi:10.1172/jci.insight.138999 (2020).
28 Roers, A., Hiller, B. & Hornung, V. Recognition of Endogenous Nucleic Acids by the Innate Immune System. Immunity 44, 739-754, doi:10.1016/j.immuni.2016.04.002 (2016).
29 Warkentin, T. E., Sheppard, J. A., Moore, J. C., Cook, R. J. & Kelton, J. G. Studies of the immune response in heparin-induced thrombocytopenia. Blood 113, 4963-4969, doi:10.1182/blood-2008-10-186064 (2009).
30 Greinacher, A., Kohlmann, T., Strobel, U., Sheppard, J. A. & Warkentin, T. E. The temporal profile of the anti-PF4/heparin immune response. Blood 113, 4970-4976, doi:blood-2008-08-173062 [pii]
10.1182/blood-2008-08-173062 [doi] (2009).
31 Greinacher, A. et al. Thrombotic Thrombocytopenia after ChAdOx1 nCov-19 Vaccination. N. Engl. J. Med., doi:10.1056/NEJMoa2104840 (2021).
32 Schultz, N. H. et al. Thrombosis and Thrombocytopenia after ChAdOx1 nCoV-19 Vaccination. N. Engl. J. Med., doi:10.1056/NEJMoa2104882 (2021).
33 Muir, K. L., Kallam, A., Koepsell, S. A. & Gundabolu, K. Thrombotic Thrombocytopenia after Ad26.COV2.S Vaccination. N. Engl. J. Med., doi:10.1056/NEJMc2105869 (2021).
34 Kreer, C. et al. Longitudinal Isolation of Potent Near-Germline SARS-CoV-2-Neutralizing Antibodies from COVID-19 Patients. Cell 182, 1663-1673, doi:10.1016/j.cell.2020.08.046 (2020).
35 Seydoux, E. et al. Analysis of a SARS-CoV-2-Infected Individual Reveals Development of Potent Neutralizing Antibodies with Limited Somatic Mutation. Immunity 53, 98-105 e105, doi:10.1016/j.immuni.2020.06.001 (2020).
36 Galson, J. D. et al. Deep Sequencing of B Cell Receptor Repertoires From COVID-19 Patients Reveals Strong Convergent Immune Signatures. Frontiers in immunology 11, 605170, doi:10.3389/fimmu.2020.605170 (2020).
37 Briney, B., Inderbitzin, A., Joyce, C. & Burton, D. R. Commonality despite exceptional diversity in the baseline human antibody repertoire. Nature 566, 393-397, doi:10.1038/s41586-019-0879-y (2019).
38 Nazy, I. et al. Platelet-activating immune complexes identified in critically ill COVID-19 patients suspected of heparin-induced thrombocytopenia. Journal of thrombosis and haemostasis : JTH, doi:10.1111/jth.15283 (2021).
39 Brodard, J. et al. COVID-19 patients often show high-titer non-platelet-activating anti-PF4/heparin IgG antibodies. Journal of thrombosis and haemostasis : JTH, doi:10.1111/jth.15262 (2021).
40 May, J. E., Siniard, R. C. & Marques, M. The challenges of diagnosing heparin-induced thrombocytopenia in patients with COVID-19. Res Pract Thromb Haemost, doi:10.1002/rth2.12416 (2020).
41 Patell, R. et al. Heparin induced thrombocytopenia antibodies in COVID-19. Am. J. Hematol., doi:10.1002/ajh.25935 (2020).
42 Daviet, F. et al. Heparin-Induced Thrombocytopenia in Severe COVID-19. Circulation 142, 1875-1877, doi:10.1161/CIRCULATIONAHA.120.049015 (2020).
43 Al-Samkari, H. et al. Thrombosis, Bleeding, and the Observational Effect of Early Therapeutic Anticoagulation on Survival in Critically Ill Patients With COVID-19. Ann. Intern. Med., doi:10.7326/M20-6739 (2021).
44 Althaus, K. et al. Antibody-induced procoagulant platelets in severe COVID-19 infection. Blood, doi:10.1182/blood.2020008762 (2020).
45 Jobe, S. M. & Wen, R. Another front in COVID-19's perfect storm. Blood 137, 1006-1007, doi:10.1182/blood.2020010459 (2021).
46 Rauova, L. et al. Role of platelet surface PF4 antigenic complexes in heparin-induced thrombocytopenia pathogenesis: diagnostic and therapeutic implications. Blood 107, 2346-2353, doi:10.1182/blood-2005-08-3122 (2006).
47 Padmanabhan, A. et al. Heparin-independent, PF4-dependent binding of HIT antibodies to platelets: implications for HIT pathogenesis. Blood 125, 155-161, doi:10.1182/blood-2014-06-580894 (2015).
48 Shen, B. et al. Proteomic and Metabolomic Characterization of COVID-19 Patient Sera. Cell 182, 59-72 e15, doi:10.1016/j.cell.2020.05.032 (2020).
49 Hottz, E. D. et al. Platelet activation and platelet-monocyte aggregate formation trigger tissue factor expression in patients with severe COVID-19. Blood 136, 1330-1341, doi:10.1182/blood.2020007252 (2020).
50 Aid, M. et al. Vascular Disease and Thrombosis in SARS-CoV-2-Infected Rhesus Macaques. Cell 183, 1354-1366 e1313, doi:10.1016/j.cell.2020.10.005 (2020).
51 Zheng, Y. et al. B-cell tolerance regulates production of antibodies causing heparin-induced thrombocytopenia. Blood 123, 931-934, doi:10.1182/blood-2013-11-540781 (2014).
52 Zheng, Y. et al. Regulatory T Cells Control PF4/Heparin Antibody Production in Mice. J Immunol, doi:10.4049/jimmunol.1900196 (2019).
53 Zheng, Y. et al. Critical role for mouse marginal zone B cells in PF4/heparin antibody production. Blood 121, 3484-3492, doi:10.1182/blood-2013-01-477091 (2013).
54 Tay, M. Z., Poh, C. M., Renia, L., MacAry, P. A. & Ng, L. F. P. The trinity of COVID-19: immunity, inflammation and intervention. Nature reviews. Immunology 20, 363-374, doi:10.1038/s41577-020-0311-8 (2020).