1. Trust for American’s Health. CDC Data Show High Hospitalization Rates for Diagnosed COVID-19 Patients with Underlying Conditions in the United States. 2021. https://www.tfah.org/wp-content/uploads/2020/04/COVIDunderlyingconditions040320.pdf (accessed October 30 2021).
2. NIH. What's New in the Guidelines. 2021. https://www.covid19treatmentguidelines.nih.gov/about-the-guidelines/whats-new/ (accessed October 30 2021).
3. Archambault AS, Zaid Y, Rakotoarivelo V, et al. High levels of eicosanoids and docosanoids in the lungs of intubated COVID‐19 patients. The FASEB Journal 2021; 35(6).
4. Al-Hakeim HK, Al-Hamami SA, Almulla AF, Maes M. Increased Serum Thromboxane A2 and Prostacyclin but Lower Complement C3 and C4 Levels in COVID-19: Associations with Chest CT Scan Anomalies and Lowered Peripheral Oxygen Saturation. COVID 2021; 1(2): 489-502.
5. Hottz ED, Azevedo-Quintanilha IG, Palhinha L, et al. Platelet activation and platelet-monocyte aggregates formation trigger tissue factor expression in severe COVID-19 patients. Blood 2020.
6. Larsson AK, Hagfjärd A, Dahlén SE, Adner M. Prostaglandin D₂ induces contractions through activation of TP receptors in peripheral lung tissue from the guinea pig. Eur J Pharmacol 2011; 669(1-3): 136-42.
7. Walch L, De Montpreville V, Brink C, Norel X. Prostanoid EP1- and TP-receptors involved in the contraction of human pulmonary veins. British Journal of Pharmacology 2001; 134(8): 1671-8.
8. Craven PA, Studer RK, DeRubertis FR. Thromboxane/Prostaglandin Endoperoxide-Induced Hypertrophy of Rat Vascular Smooth Muscle Cells Is Signaled by Protein Kinase C-Dependent Increases in Transforming Growth Factor-β. Hypertension 1996; 28(2): 169-76.
9. Witkowski M, Tizian C, Ferreira-Gomes M, et al. Untimely TGFβ responses in COVID-19 limit antiviral functions of NK cells. Nature 2021.
10. Theken KN, Fitzgerald GA. Bioactive lipids in antiviral immunity. Science 2021; 371(6526): 237-8.
11. Sposito B, Broggi A, Pandolfi L, et al. The interferon landscape along the respiratory tract impacts the severity of COVID-19. Cell 2021.
12. Gupta A, Kalantar-Zadeh K, Srinivasa RT. Ramatroban as a Novel Immunotherapy for COVID-19. Molecular and Genetic Medicine 2020; 14(3).
13. Gupta A, Chiang KC. Prostaglandin D2 as a mediator of lymphopenia and a therapeutic target in COVID-19 disease. Medical Hypotheses 2020; 143: 110122.
14. Uller L, Mathiesen JM, Alenmyr L, et al. Antagonism of the prostaglandin D2 receptor CRTH2 attenuates asthma pathology in mouse eosinophilic airway inflammation. Respiratory Research 2007; 8(1).
15. Ishizuka T, Matsui T, Okamoto Y, Ohta A, Shichijo M. Ramatroban (BAY u 3405): a novel dual antagonist of TXA2 receptor and CRTh2, a newly identified prostaglandin D2 receptor. Cardiovasc Drug Rev 2004; 22(2): 71-90.
16. Schuster DP, Kozlowski J, Brimiouelle S. Effect of thromboxane receptor blockade on pulmonary capillary hypertension in acute lung injury. 2001 Meeting of the American Thoracic Society. San Francisco, CA; 2001.
17. Slotman GJ, Quinn JV, Burchard KW, Gann DS. Thromboxane interaction with cardiopulmonary dysfunction in graded bacterial sepsis. J Trauma 1984; 24(9): 803-10.
18. An J, Li JQ, Wang T, et al. Blocking of thromboxane A(2) receptor attenuates airway mucus hyperproduction induced by cigarette smoke. Eur J Pharmacol 2013; 703(1-3): 11-7.
19. Kobayashi K, Horikami D, Omori K, et al. Thromboxane A2 exacerbates acute lung injury via promoting edema formation. Scientific Reports 2016; 6(1): 32109.
20. Bauer J, Ripperger A, Frantz S, Ergün S, Schwedhelm E, Benndorf RA. Pathophysiology of isoprostanes in the cardiovascular system: implications of isoprostane-mediated thromboxane A2receptor activation. British Journal of Pharmacology 2014; 171(13): 3115-31.
21. Zhao Z, Hu J, Gao X, et al. Hyperglycemia via activation of thromboxane A2 receptor impairs the integrity and function of blood-brain barrier in microvascular endothelial cells. Oncotarget 2017; 8(18): 30030-8.
22. Xue L, Gyles SL, Wettey FR, et al. Prostaglandin D2 Causes Preferential Induction of Proinflammatory Th2 Cytokine Production through an Action on Chemoattractant Receptor-Like Molecule Expressed on Th2 Cells. The Journal of Immunology 2005; 175(10): 6531-6.
23. Xue L, Salimi M, Panse I, et al. Prostaglandin D2 activates group 2 innate lymphoid cells through chemoattractant receptor-homologous molecule expressed on TH2 cells. Journal of Allergy and Clinical Immunology 2014; 133(4): 1184-94.e7.
24. Yang L, Liu S, Liu J, et al. COVID-19: immunopathogenesis and Immunotherapeutics. Signal Transduction and Targeted Therapy 2020; 5(1).
25. Lucas C, Wong P, Klein J, et al. Longitudinal analyses reveal immunological misfiring in severe COVID-19. Nature 2020; 584(7821): 463-9.
26. Perlman S. COVID-19 poses a riddle for the immune system. Nature 2020; 584(7821): 345-6.
27. Skaria T, Burgener J, Bachli E, Schoedon G. IL-4 Causes Hyperpermeability of Vascular Endothelial Cells through Wnt5A Signaling. PLOS ONE 2016; 11(5): e0156002.
28. Donlan AN, Sutherland TE, Marie C, et al. IL-13 is a driver of COVID-19 severity. JCI Insight 2021.
29. Tanabe T, Fujimoto K, Yasuo M, et al. Modulation of mucus production by interleukin-13 receptor alpha2 in the human airway epithelium. Clin Exp Allergy 2008; 38(1): 122-34.
30. Gómez-Escobar LG, Hoffman KL, Choi JJ, et al. Cytokine signatures of end organ injury in COVID-19. Scientific Reports 2021; 11(1): 12606.
31. Rola-Pleszczynski M, Gagnon L, Bolduc D, LeBreton G. Evidence for the involvement of the thromboxane synthase pathway in human natural cytotoxic cell activity. J Immunol 1985; 135(6): 4114-9.
32. Broggi A, Ghosh S, Sposito B, et al. Type III interferons disrupt the lung epithelial barrier upon viral recognition. Science 2020; 369(6504): 706-12.
33. Werder RB, Lynch JP, Simpson JC, et al. PGD2/DP2 receptor activation promotes severe viral bronchiolitis by suppressing IFN-lambda production. Sci Transl Med 2018; 10(440).
34. Ricke-Hoch M, Stelling E, Lasswitz L, et al. Impaired immune response mediated by prostaglandin E2 promotes severe COVID-19 disease. PLOS ONE 2021; 16(8): e0255335.
35. Diao B, Wang C, Wang R, et al. Human kidney is a target for novel severe acute respiratory syndrome coronavirus 2 infection. Nature Communications 2021; 12(1): 2506.
36. Böhm E, Sturm GJ, Weiglhofer I, et al. 11-Dehydro-thromboxane B2, a Stable Thromboxane Metabolite, Is a Full Agonist of Chemoattractant Receptor-homologous Molecule Expressed on TH2 Cells (CRTH2) in Human Eosinophils and Basophils. Journal of Biological Chemistry 2004; 279(9): 7663-70.
37. Tantry US, Bliden KP, Cho A, et al. First Experience Addressing the Prognostic Utility of Novel Urinary Biomarkers in Patients With COVID-19. Open Forum Infectious Diseases 2021; 8(7).
38. Westlund P, Kumlin M, Nordenström A, Granström E. Circulating and urinary thromboxane B2 metabolites in the rabbit: 11-dehydro-thromboxane B2 as parameter of thromboxane production. Prostaglandins 1986; 31(3): 413-43.
39. Townsend L, Fogarty H, Dyer A, et al. Prolonged elevation of D-dimer levels in convalescent COVID-19 patients is independent of the acute phase response. J Thromb Haemost 2021; 19(4): 1064-70.
40. Huang L, Yao Q, Gu X, et al. 1-year outcomes in hospital survivors with COVID-19: a longitudinal cohort study. The Lancet 2021; 398(10302): 747-58.
41. Pang J, Qi X, Luo Y, et al. Multi-omics study of silicosis reveals the potential therapeutic targets PGD(2) and TXA(2). Theranostics 2021; 11(5): 2381-94.
42. Onaka Y, Shintani N, Nakazawa T, et al. CRTH2, a prostaglandin D2 receptor, mediates depression-related behavior in mice. Behavioural Brain Research 2015; 284: 131-7.