The Hv1 proton channel is functionally expressed in spinal microglia and is upregulated after peripheral nerve injury.
Gene profiling in the spinal cord after peripheral nerve injury showed the regulation of numerous genes related to immune function [44, 45]. In addition, activated microglia undergo proliferation in the ipsilateral dorsal horn of the spinal cord after peripheral nerve injury and promote neuropathic pain [12, 46, 47]. Hv1 proton channel is a major ion channel in microglia. However, the function of Hv1 in spinal cord microglia in pain is largely unknown. Using CX3CR1GFP/+ mice, we performed whole-cell recording in GFP-labeled microglia from acute spinal cord slices harvested from naïve mice (Fig. 1A). At a holding potential of -60 mV with intracellular pH5.5, a series of depolarizing voltage steps induced outward proton currents in spinal microglia in WT mice. The voltage-gated proton currents were likely mediated by Hv1 channel, as currents were totally abolished in Hv1 KO mice (Fig. 1A-B). Therefore, Hv1 channel is functionally expressed in spinal microglia as like that in brain microglia [32].
To examine if Hv1 protein expression is regulated after peripheral nerve injury, we used spinal nerve transection (SNT) in mice, a well-established mouse model of neuropathic pain. Spinal dorsal horn tissues were collected for Western blot analysis following SNT at various postoperative days (POD). We found that the Hv1 protein levels were significantly upregulated at POD1 to POD5 (Fig. 1C-D). The transient upregulation of spinal Hv1 after SNT is paralleled with the critical time window, during which microglia participate neuropathic pain development [3, 48].
The Hv1 proton channel contributes to neuropathic pain behaviors after SNT.
The upregulation of Hv1 in microglia after SNT suggests that the channel may participate in neuropathic pain. To directly test this idea, we compared the pain behaviors between WT and Hv1 KO mice after SNT. First, acute pain behaviors were tested and we found that Hv1 KO mice exhibited similar responses to a tail flick test as WT mice (Fig. 2A). Moreover, basal motor behaviors in Hv1 WT and KO mice were similar (Fig. 2B). Next, we examined chronic pain behaviors, including mechanical allodynia and thermal hyperalgesia, after SNT. WT mice developed both mechanical allodynia and thermal hyperalgesia that reached a plateau by the third postoperative day (Fig. 2C-D). Hv1 KO mice also developed SNT-induced pain hypersensitivity (Fig. 2C-D). However, Hv1 KO mice showed significant improvement in pain hypersensitivities on POD 5–7 but not POD 1–3 compared with WT mice. The attenuation of neuropathic pain in the later phase following SNT in Hv1 KO mice suggest a possible role of Hv1 channel function in neuropathic pain maintenance.
To confirm that the behavior phenotype in Hv1 KO mice after SNT extends to other nerve injury models, we repeated the behavioral experiments after ligation of common peroneal nerve ligation (CPN). This neuropathic pain model employs a less invasive procedure and produces little muscle damage. Thus the animals recover quickly from the surgery with less motor dysfunctions [49]. As with the SNT model, the behavioral phenotypes of Hv1 KO mice could be distinguished from WT mice in the CPN model (Fig. 2E-F). Taken together, these results indicate that microglial Hv1 channel plays a significant role in the maintenance of pain hypersensitivities, as demonstrated by two neuropathic pain models.
Microglial activation in the spinal cord persists in Hv1 KO mice after SNT.
Robust proliferation of spinal microglia occurs after SNT and is an important feature of microglial activation during neuropathic pain [12, 46]. Since the Hv1 channel is specifically expressed in microglia, we first examined microglial activation after SNT beginning with microglial proliferation. By immunostaining of microglial marker Iba1 in mice, we quantified microglial cell numbers in the ipsilateral dorsal horn at POD7 after SNT. For proliferation, we labeled spinal cord tissues with BrdU (Fig. 3A). Our results showed that microglial cells in the ipsilateral dorsal horn were about 5 folds that of the contralateral dorsal horn for both WT and Hv1 KO mice. The density of BrdU-positive microglia was about 30% and also similar between WT and Hv1 KO mice (Fig. 3C). These data indicate that SNT-induced microglial cell proliferation was not affected by Hv1 deficiency.
MAPK p38 is predominantly expressed in spinal microglia and p38 phosphorylation (p-p38) is critical for microglial activation, which triggers several downstream pathways such as P2X4R upregulation, BDNF/cytokine release, and proliferation following neuropathic pain [50, 51]. Thus, we examined the p-p38 expression using double immunostaining together with Iba1 at POD3 after SNT. We found that p-p38 positive signals expressed in Iba1+ microglia (Fig. 3B). In the ipsilateral dorsal horn, Iba1-labelled microglia showed a hypertrophic morphology with enlarged somata compared to those in the contralateral dorsal horn (see inserts in Fig. 3B). Statistical analysis showed that the fluorescent intensity of p-p38 signals was significantly increased in the ipsilateral dorsal horn compared to the contralateral side and there was no difference between WT and Hv1 KO mice (Fig. 3D). Together, our results indicate that Hv1 deficiency did not affect spinal microglial activation as determined by microglial cell numbers, proliferation, and p38 activation following SNT.
Hv1-dependent ROS production in microglia contributes to the neuropathic pain.
Hv1 channel is known to participate in NOX-dependent ROS production in leukocytes and microglia [32, 52]. The proton current through Hv1 provides charge compensation and balances intracellular acidification during ROS production [53, 54]. Increased and oxidized nucleic acid by ROS can be detected using 8-hydroxyguanine (8-OHG) antibody in the spinal cord dorsal horn [22]. We found indeed 8-OHG signals were increased in Iba1-positive microglia from ipsilateral dorsal horn after SNT. However, the 8-OHG signal was largely abolished in Hv1 KO mice (Fig. 4A). The overall 8-OHG intensity in the ipsilateral horn was 3 folds that of the contralateral horn in WT mice and 1.4 fold that of the Hv1 KO ipsilateral horn (Fig. 4D). The overall background intensity of the contralateral horn was not different between WT and Hv1 KO samples (data not shown). Next, we measured superoxide generation in L4 microglia with oxidized-Dihydroethidium (ox-DHE) after SNT. DHE (10µg in 5 µl ACSF) was intrathecally injected 2 hours before the mice were sacrificed. Positive ox-DHE signals appear as bright red puncta within microglia (Fig. 4B). Consistent with the results using 8-OHG, the specific ox-DHE signal on microglia from Hv1 KO samples was significantly weaker than that from the WT (Fig. 4E). Finally, we also investigated the functional expression of NADPH oxidase (NOX) in Hv1 KO mice following SNT by immunostaining for gp91phox (NOX2). We found Hv1 KO spinal cords exhibited significantly lower gp91phox expression compared to Hv1 WT tissues 3 days after SNT (Fig. 4C, F). Therefore, our results demonstrate that ROS production was impaired in Hv1 KO mice after peripheral nerve injury.
Considering the important role of ROS in the chronic pain pathogenesis, the abrogation of ROS production in Hv1 KO mice may contribute to the attenuation of pain hypersensitivities after SNT. To test this idea, ROS scavenger sulforaphane (SF, 50 mg/kg, i.p.), which exerts its antioxidant effect by inducing nuclear translocation of Nrf-2 with subsequent heme oxygenase-1 (HO-1) expression in myeloid cells [22], was treated at 1 hour following SNT. We found that treatment of WT mice with SF attenuated mechanical allodynia (Fig. 4G). However, SF did not affect pain hypersensitivities of Hv1 KO mice after SNT (Fig. 4G). Together, these results indicate that Hv1 deficient animals generate less ROS, which contributes to the amelioration of neuropathic pain phenotypes after SNT.
Astrocyte activation was reduced in spinal cord of Hv1 KO mice after SNT.
Astrocytes are important for neuropathic pain development, especially in the late maintenance phase [24, 55]. The fact that the neuropathic pain attenuation in Hv1 KO mice appeared in the late phase led us to study astrocyte involvement. SNT induced a dramatic GFAP expression on the ipsilateral dorsal horn on POD7, which appeared in both superficial and deeper lamina in WT mice (Fig. 5A, C). In Hv1 KO mice, GFAP induction was significantly reduced (Fig. 5A, C). To test the role of Hv1-dependent ROS production in astrocyte activation, we examined the effect of SF treatment. We found that GFAP expression in WT mice was greatly reduced in both superficial and deep lamina after SF treatment (Fig. 5A, C). Notably, SF treatment also reduced microglial activation shown as reduced cell densities compared with saline group (Fig. 5D). These results strongly indicate that SNT induced spinal astrocyte activation requires Hv1 and ROS production in microglia.
Reduced astrocytic IFN-γ mediates attenuated pain hypersensitivity in Hv1 KO mice after SNT.
Since spinal cytokines are critical for neuropathic pain pathogenesis [3, 5, 56], we investigated potential differences between cytokine expression in WT and Hv1 KO mice. The mRNA expression levels were examined using real time PCR from spinal cord L4 segments at POD3 after SNT. Interestingly, we found that BDNF, TNF-α, IL-1β, and IL-18 were expressed at similar levels in WT and Hv1 KO tissues. However, IFN-γ expression levels were abolished in Hv1 KO tissues (Fig. 6A).
IFN-γ is reported to be able to activate microglia through IFN-γ receptors and induce chronic pain [23, 44]. The absence of IFN-γ induction we observed in Hv1 KO mice after SNT could contribute to neuropathic pain attenuation. To test this hypothesis, we first used fluorescent immunostaining to detect the SNT induced IFN-γ expression in spinal dorsal horn on both POD3 and POD7 (Fig. 6B). We found that the intensities of IFN-γ were positively correlated with hypertrophic astrocyte morphologies and high expression of GFAP (Fig. 6B, inserts). The basal expression of IFN-γ in the contralateral dorsal horn of Hv1 KO mice was similar as that in WT tissues. However, IFN-γ induction in the ipsilateral dorsal horn was largely abolished at POD3 and POD7 after SNT (Fig. 6C).
Next, to directly test the function of IFN-γ in the spinal cord, we intrathecally injected IFN-γ neutralizing antibodies (1 µg in 5 µl ACSF) into WT mice after neuropathic pain was established following SNT. We found that by neutralizing endogenous IFN-γ partially reversed the mechanical allodynia within 24 hour of the infusion of the antibody. However, the mechanical allodynia returned to saline group level after 72 hr (Fig. 6D). In the Hv1 KO mice, IFN-γ antibody treatment after SNT did not affect the behavioral responses at any time point. These results suggest that endogenous IFN-γ and Hv1 are both necessary for neuropathic pain maintenance.
Microglial Hv1 and astrocytic IFN-γ mediate microglia-astrocyte interaction in pain hypersensitivities.
The reduced astrocytic IFN-γ expression and abolished IFN-γ-dependent neuropathic pain in Hv1 KO mice indicate microglial Hv1 and astrocytic IFN-γ mediates the microglia-astrocyte interaction underlying pain hypersensitivities. To test this hypothesis, we intrathecally injected IFN-γ (100U in 5 µl ACSF) at POD3 after SNT and then examined the pain hypersensitivities in Hv1 KO mice. We found that IFN-γ could restore the mechanical allodynia in Hv1 KO mice, decreasing the paw withdrawal threshold to the WT mice levels at 24 hour after SNT (Fig. 7A). The rescue effect was transient and the pain hypersensitivities gradually disappeared at POD 5 and 7 (Fig. 7A).
Exogenous IFN-γ triggers microglial proliferation and increases pain hypersensitivities [23]. To clarify the Hv1 role in IFN-γ-induced pain increase, we performed IFN-γ infusion experiments with both naïve WT and Hv1 KO mice by intrathecal injection of IFN-γ (100U in 5 µl ACSF). Mechanical allodynia was successfully induced in WT mice with a peak at 2 days after the injection. In Hv1 KO mice, a similar lower threshold decrease appeared at 24 hour after the injection but then recovered quickly on subsequent days (Fig. 7B). Iba1 staining showed that microglia cell densities were doubled compared with the naive mice in both the WT and Hv1 KO groups (Fig. 7C, D). Thus, exogenous IFN-γ can induce proliferation of Hv1 KO microglia similar as WT ones. To study if astrocytes were activated subsequently to IFN-γ infusion, GFAP immunostaining was performed on IFN-γ-infused animals. We found that IFN-γ treatment induced robust astrocyte activation (GFAP expression) in WT mice, while GFAP upregulation was much less pronounced in the Hv1 KO mice (Fig. 7C, E). Therefore, these results suggest that IFN-γ induced allodynia requires Hv1-dependent astrocyte activation.