We have established a novel method for measuring the RdRp activity of influenza viruses using RT-PCR. In current methods [15, 18], the amount of mRNA synthesized is quantified using 32P-labeled nucleoside triphosphates (GTP or UTP). Therefore, only the total number of eight-segment mRNAs is calculated. However, in the method we developed, the mRNA of each segment can be analyzed individually, and the copy number of the mRNA produced can be quantified through RT-PCR.
In this study, mRNAs of segments 1, 4, and 5 were examined, but by designing the primer using the primer design reported by Kawakami et al. [14] as reference, the amount of cRNAs and vRNAs of each of the eight segments present in influenza virus might be also quantified.
Viral particles were purified from the culture supernatants of infected cells. Although ultracentrifugation is commonly used to prepare influenza virus polymerase solutions, the method is time consuming and unsuitable for screening. In this experiment, we collected influenza viral particles using magnetic beads. Sakudo et al. have shown through immunochromatography that these beads can efficiently capture influenza viruses in cell culture media [12]. Using this method, it is possible to collect viral particles more easily and quickly than that using ultracentrifugation; therefore, viral particles with high RdRp enzyme activity can be collected. However, as these beads may adsorb various viruses through electrostatic interactions, they are not specific for influenza virus, leading to contamination with other components from the cell culture medium. In our case, the virus polymerase activity was not affected by contamination with the culture medium.
The reaction time for polymerase activity was the same as previously reported [19]. The optimum temperature for this method was 37°C (Fig. 3), but some previous studies have reported the use of 30°C [7, 13, 20, 21] Even though studies have reported the use of 37°C [22, 23], it is unclear why 37°C was optimum for our method.
Regarding the concentration of Mg in the RNA synthesis reaction buffer, the polymerase activity increased (Fig. 4) at Mg concentrations similar to those previously reported [7, 11, 15]. However, the amplification of each segment increased sharply at 3 or 4 mM MgCl2 and showed little increase at concentrations below 3 mM (Fig. 4). Zhang et al. showed a similar rapid increase, although the border concentrations were slightly different [24].
The presence of ApG, a specific dinucleotide primer, increased mRNA production by approximately 10-fold in each segment, but mRNA was synthesized to a certain extent even in its absence (Fig. 5).
RTP inhibits RdRp because it is mistakenly taken up during mRNA synthesis as it is similar in structure to GTP and stops mRNA synthesis [16, 17]. Initially, when the GTP concentration was the same as that of ATP, CTP, and UTP, 100 µM RTP had no inhibitory effect, and 500 µM RTP only inhibited segment 1 by 57.1% and segment 4 by 47.1% (data not shown). Therefore, in this experiment we lowered GTP concentration to show the inhibitory effect of RTP. The inhibitory effect of 100 µM RTP was observed resulting in 20.8% inhibition for segment 1, 39.2%, for segment 4, and 44.5% for segment 5 (Fig. 6). In segments 4 and 5, there was no effect of the GTP concentration on mRNA production, and mRNA production decreased depending on the RTP concentration (Fig. 6b and c). However, in segment 1, mRNA production was significantly reduced by the dilution of GTP, even without RTP. Therefore, the concentration-dependent inhibition of RTP could not be confirmed in segment 1 (Fig. 6a). The concentration of GTP is considered important for the synthesis of segment 1 mRNA.
Since the amount of mRNA synthesis was reduced in the absence of ApG or magnesium, and the inhibition of synthesis by RTP was confirmed, this experimental method proved useful at evaluating the activity of RdRp of influenza viruses.