Animals
C57BL/6 mice were purchased from the Experimental Animal Center of the Fourth Military Medical University. The mice were housed at the animal care facility at 22°C with 12-h light/dark cycles. In vivo analysis of azoramide responses by BMP2 calvarial injection was conducted as described below. Briefly, 14-day-old mice were injected with recombinant BMP2 (10 mg/ml; Wish biotechnology, Beijing, China) 30 µl per injection, three times a day for 5 days, into the periosteal tissue overlying the right parietal bone; saline vehicle control was injected into the left parietal bone. Meanwhile, azoramide compound (20 mg/ml, 30 µl per injection; MedChem Express, Princeton, NJ, USA) was administered via intraperitoneal injection once a day for 14 consecutive days. Animals were then sacrificed after the last injection to analyze bone formation. All animal care and experimental procedures were performed under approval of the Institutional Animal Care and Use Committee of the Fourth Military Medical University.
Cell culture and differentiation
The C3H10T1/2 cell line was obtained from the Center for Type Culture Collection of China. Cells were cultured in complete medium containing Dulbecco’s modified Eagle’s medium (DMEM; Gibco, Gaithersburg, MD, USA) with 10% fetal bovine serum (FBS; Gibco) and penicillin/ streptomycin (Invitrogen, Carlsbad, CA, USA), and used for the in vitro experiments. To induce osteogenic differentiation, cells were cultured in osteogenic media containing 100 nM dexamethasone (Sigma-Aldrich, St. Louis, MO, USA), 50 µg/ml ascorbic acid (Sigma-Aldrich), and 10 mM β-glycerophosphate (Sigma-Aldrich). To induce adipogenic differentiation, cells were cultured in adipogenic medium containing 10 µg/ml insulin (Sigma- Aldrich), 1 µM dexamethasone (Sigma-Aldrich), 0.5 mM 3-isobutyl-1-methylxanthine (Sigma-Aldrich), and 1 µM rosiglitazone (Sigma-Aldrich). All cell-based in vitro experiments were repeated three times.
Transfection
Two GLP-1R target sequences (si-glp-1r-1: 5′-CCGGA CCTTTGATGACTAT-3′; si-glp-1r-1: 5′-GGAACTAC ATCCACCTGAA-3′) were designed to synthesize small interfering (si)RNA by Sangon (Shanghai, China). A scrambled siRNA sequence (sense: 5′-UUCUCCGAACGUGUCACGUTT- 3′ and antisense: 5′- ACGUGACAC GUUCGGAGAATT-3′) was used as a control. Cells were transfected with Lipofectamine™ 2000 Transfection Reagent (Invitrogen) as described in the manufacturer’s protocol. Cells were plated in six-well plates starting with cell density at > 90%. Four hours before transfection, the medium was changed to Opti-MEM® Medium (Gibco). The siRNA (100 nM) was incubated with 5 µl Lipofectamin™ 2000 in Opti-MEM® Medium for 20 min at room temperature before transfection. Then, 6 h later, the medium was switched to complete culture medium and, 48 h before induction, C3H10T1/2 cells were transfected with scramble or GLP-1R siRNA. The expression plasmid harboring with green fluorescent protein (GFP) was used as an indicator for transfection efficiency. Cells transfected with scramble or GLP-1R siRNA were used for osteogenic and adipogenic differentiation.
Microcomputed tomography and histology
Dissected calvaria from BMP2-injected mice were fixed immediately in 70% ethanol and scanned with a microcomputed tomography (micro-CT) system (Inveon Micro-CT, Germany). Image acquisition was performed at 80 kV and 500 µA with a resolution of 2048 × 2048 pixels and a voxel size of 10.56 µm. Quantitation of heterotopic new bone formation and reconstruction into three dimensional (3D) volumes was made using software (Inveon Research Workplace 2.2 and Inveon Acquisition Workplace, version 1.4.3.6) that was compatible with the micro-CT system. For histology analysis, dissected calvaria were fixed in 4% paraformaldehyde, and decalcified tissues were embedded into paraffin accordingly. Sections of the embedded bone tissues were subjected to hematoxylin and eosin (H&E) staining to count the osteoblasts and toluidine blue staining to visualize adipocytes. Quantitative analysis of histological staining was performed with ImageJ, as previously described (NIH, Bethesda, MD, USA) [12].
Alkaline phosphatase staining
Mouse bone marrow-derived MSCs were developed as reported. Mouse MSC and C3H10T1/2 cells were seeded in six-well plates and cultured for 7 days in osteogenic differentiation medium with or without azoramide. The cells were then rinsed three times with phosphate buffered saline (PBS), fixed in 4% paraformaldehyde at room temperature for 15 min, and washed three more times with PBS. For staining, an alkaline phosphatase (ALP) substrate solution (Beyotime, Shanghai, China) was added to the fixed cells for 30 min at room temperature. Cells were then washed three times with distilled water, and images were photographed.
Quantification of ALP activity
After MSC or C3H10T1/2 cells were cultured in osteogenic differentiation medium with different treatments for 7 days, the cells were lysed and ALP activity was assayed with the Beyotime Alkaline Phosphatase Assay Kit, calculated after normalization to the total protein content according to the protocol from the supplier.
Alizarin red S staining and quantification
MSC and C3H10T1/2 cells were cultured in osteogenic differentiation medium for 21 days. Alizarin red S staining was used to measure the degree of mineralization of cells on the sample surfaces with 1% Alizarin red S staining solution (Sigma-Aldrich) for 30 min at room temperature. Cells were then washed with distilled water three times to remove unbound dye and photographed. For quantification of mineralization, the staining was solubilized with 100 mM acetyl pyridinium chloride (Sigma-Aldrich) and the extracted stains were then measured using a microplate absorbance reader (Bio-Rad, Hercules, CA, USA) at 562 nm to quantify the osteogenic differentiation of C3H10T1/2 cells.
Oil red O staining and quantification
For Oil red O staining, MSC and C3H10T1/2 cells were cultured in six-well culture plates for 8 days. Cells were washed with PBS, fixed in 4% paraformaldehyde for 15 min at room temperature, and then washed with 60% isopropanol. The cells were stained with 0.6% (w/v) Oil red O (Sigma-Aldrich) solution (60% isopropanol, 40% water) for 30 min at room temperature. Cells were then washed with distilled water three times to remove unbound dye and photographed. Stained Oil red O was also eluted with 100% isopropanol (v/v) and quantified by measuring the optical absorbance at 540 nm.
Real-time polymerase chain reaction
Following various treatments, cells were washed with ice cold PBS and subjected to RNA extraction with TRIzol® Reagent (Invitrogen); RNA samples (2 µg) were reversetranscribed into complementary DNA (cDNA) using MMLV Reverse Transcriptase (Invitrogen). cDNA was then diluted and used for quantification (with β-actin gene as a control) by real-time quantitative polymerase chain reaction (qPCR), which was performed using the CFX96 Real- Time PCR system (Bio-Rad) with the Power SYBR Green PCR Master Mix (Takara, Tokyo, Japan). The primer pairs used for amplification in this study were: Runt-related transcription factor 2 (Runx2): 5′-CCACCTCTGACT TCTGCCTC-3′ (forward) and 5′-ATGAAATGCTTGGGAACTGC- 3′ (reverse); Sp7: 5′-CCCTTCTCAAGCACC AATGG-3′ (forward) and 5′-AGGGTGGGTAGTCATT TGCATAG-3′ (reverse); Integrin binding sialoprotein (Ibsp): 5′-CGGCCACGCTACTTTCTTTA-3′ (forward) and 5′-TTGAAGTCTCCTCTTCCTCCC-3′ (reverse); bone gamma-carboxyglutamate protein (Bglap): 5′-GGCT TAAAGACCGCCTACAG-3′ (forward) and 5′-GAGAG GACAGGGAGGATCAA-3′ (reverse); PPARγ: 5′-GGTC TCGGTTGAGGGGAC-3′ (forward) and 5′-CCATGG TAATTTCAGTAAAGGGTAG-3′ (reverse); Fatty acid binding protein 4 (Fabp4): 5′-CGCAGACGACAGGA AGGTGAA-3′ (forward) and 5′-GAAGTCACGCCTTT CATAACACAT-3′ (reverse); Adiponectin: 5′-CAGTG GATCTGACGACACCAA-3′ (forward) and 5′-CGTCAT CTTCGGCATGACTG-3′ (reverse); Tcf7l2: 5′-CCCATC CGCTAGGATGGTTAG-3′ (forward) and 5′-TGGGGTAGGGGTGTCTGAAT-3′ (reverse); β-actin: 5′-AGCGG
GAAATCGTGCGTGAC-3′ (forward) and 5′-TGGAAGGTGGACAGCGAGGC-3′ (reverse).
Western blotting
Cells cultured under the different conditions were washed with ice-cold PBS and lysed in RIPA buffer containing a protease inhibitor cocktail (Roche, Mannheim, Germany). Protein concentrations were determined using the BCA assay kit (Thermo Scientific, Waltham, MA, USA). Total protein of 50 µg was separated on 12% SDSpolyacrylamide gels and transferred to nitrocellulose membrane (Millipore, Billerica, MA, USA), and the membrane was blocked with 5% nonfat milk in Tris-buffered saline (TBS). The membrane was then incubated with the appropriate primary antibodies in TBS at 4°C overnight. Antibodies for Runx2, PPARγ, Fabp4, β-catenin, and phospho-β-catenin were from Cell Signaling Technology (Beverly, MA, USA). GLP-1R antibody was from Ruiying Biological (Suzhou, Jiangsu, China), and antibodies against PKAc and β-actin were from Sangon. Secondary antibodies conjugated to IRDye 800 were detected using an Odyssey infrared imaging system (LI-COR, Lincoln, NE, USA). All Western blots were independently replicated at least three times and the intensities of the bands were quantified using ImageJ software.
Immunofluorescence staining
C3H10T1/2 cells were seeded on coverslips. After different treatment, cells were fixed with 4% paraformaldehyde for 15 min and permeabilized with 0.1% Triton X-100 in TBS for 15 min. After being blocked in 5% FBS in PBS for 30 min, cells were incubated with anti-β-catenin (Cell Signaling Technology) overnight at 4°C. After washing three times with PBS, cells were incubated with DyLight™ 594-conjugated secondary antibodies (Thermo Scientific) for 60 min at room temperature and then stained with 4′,6-diamidino-2-phenylindole (DAPI; Sigma-Aldrich) for 10 min. Slides were then washed three times and mounted. Immunofluorescence was detected using an Olympus inverted fluorescence microscope.
Statistical analysis
All data are shown as the mean ± standard deviation (SD). Data were analyzed using either a one-way analysis of variance (ANOVA) followed by a Tukey’s post-hoc test for comparison of multiple groups or an independent Student’s t test for comparison of two groups, as described in the individual figure legends (GraphPad Prism 6.0 software). A value of p < 0.05 was considered statistically significant.