Ancona, G., Alagna, L., Alteri, C., Palomba, E., Tonizzo, A., Pastena, A., Muscatello, A., Gori, A., Bandera, A., 2023. Gut and airway microbiota dysbiosis and their role in COVID-19 and long-COVID. Front. Immunol. 14. https://doi.org/10.3389/fimmu.2023.1080043
Au, L., Capotescu, C., Eyal, G., Finestone, G., 2022. Long covid and medical gaslighting: Dismissal, delayed diagnosis, and deferred treatment. SSM - Qual. Res. Health 2, 100167. https://doi.org/10.1016/j.ssmqr.2022.100167
Boongoen, T., Iam-On, N., 2018. Cluster ensembles: A survey of approaches with recent extensions and applications. Comput. Sci. Rev. 28, 1–25. https://doi.org/10.1016/j.cosrev.2018.01.003
Campello, R.J.G.B., Moulavi, D., Sander, J., 2013. Density-Based Clustering Based on Hierarchical Density Estimates, in: Pei, J., Tseng, V.S., Cao, L., Motoda, H., Xu, G. (Eds.), Advances in Knowledge Discovery and Data Mining. Springer, Berlin, Heidelberg, pp. 160–172. https://doi.org/10.1007/978-3-642-37456-2_14
Chang, C.-J., Hung, L.-Y., Kogelnik, A.M., Kaufman, D., Aiyar, R.S., Chu, A.M., Wilhelmy, J., Li, P., Tannenbaum, L., Xiao, W., Davis, R.W., 2021. A Comprehensive Examination of Severely Ill ME/CFS Patients. Healthcare 9, 1290. https://doi.org/10.3390/healthcare9101290
Chu, L., Valencia, I.J., Garvert, D.W., Montoya, J.G., 2018. Deconstructing post-exertional malaise in myalgic encephalomyelitis/ chronic fatigue syndrome: A patient-centered, cross-sectional survey. PLOS ONE 13, e0197811. https://doi.org/10.1371/journal.pone.0197811
Committee on the Diagnostic Criteria for Myalgic Encephalomyelitis/ChronicFatigue Syndrome, Board on the Health of Select Populations, Institute of Medicine, 2015. Beyond Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Redefining an Illness, The National Academies Collection: Reports funded by National Institutes of Health. National Academies Press (US), Washington (DC).
Cotler, J., Holtzman, C., Dudun, C., Jason, L.A., 2018. A Brief Questionnaire to Assess Post-Exertional Malaise. Diagnostics 8, 66. https://doi.org/10.3390/diagnostics8030066
Cummings, L., 2024. Cognitive-linguistic difficulties in adults with Long COVID: A follow-up study. Lang. Health 2, 1–21. https://doi.org/10.1016/j.laheal.2023.09.001
Cummings, L., 2023. Long COVID: The impact on language and cognition. Lang. Health. https://doi.org/10.1016/j.laheal.2023.05.001
Dagliati, A., Strasser, Z.H., Abad, Z.S.H., Klann, et al, 2023. Characterization of long COVID temporal sub-phenotypes by distributed representation learning from electronic health record data: a cohort study. eClinicalMedicine 64. https://doi.org/10.1016/j.eclinm.2023.102210
Davis, H.E., Assaf, G., McCorkell, L., Wei, H., Re’em, Y., Akrami, A., 2021a. Questionnaire to Characterize Long COVID: 200+ symptoms over 7 months. https://doi.org/10.6084/m9.figshare.13642553.v2
Davis, H.E., Assaf, G.S., McCorkell, L., Wei, H., Low, R.J., Re’em, Y., Redfield, S., Austin, J.P., Akrami, A., 2021b. Characterizing long COVID in an international cohort: 7 months of symptoms and their impact. eClinicalMedicine 38. https://doi.org/10.1016/j.eclinm.2021.101019
Davis, H.E., McCorkell, L., Vogel, J.M., Topol, E.J., 2023. Long COVID: major findings, mechanisms and recommendations. Nat. Rev. Microbiol. 21, 133–146. https://doi.org/10.1038/s41579-022-00846-2
Davis, J.T., Chinazzi, M., Perra, N., Mu, K., Pastore y Piontti, A., Ajelli, M., Dean, N.E., Gioannini, C., Litvinova, M., Merler, S., Rossi, L., Sun, K., Xiong, X., Longini, I.M., Halloran, M.E., Viboud, C., Vespignani, A., 2021. Cryptic transmission of SARS-CoV-2 and the first COVID-19 wave. Nature 600, 127–132. https://doi.org/10.1038/s41586-021-04130-w
Deer, R.R., Rock, M.A., Vasilevsky, N. et al, 2021. Characterizing Long COVID: Deep Phenotype of a Complex Condition. eBioMedicine 74. https://doi.org/10.1016/j.ebiom.2021.103722
Dennis, A., Wamil, M., Alberts, J., Oben, J., Cuthbertson, D.J., Wootton, D., Crooks, M., Gabbay, M., Brady, M., Hishmeh, L., Attree, E., Heightman, M., Banerjee, R., Banerjee, A., 2021. Multiorgan impairment in low-risk individuals with post-COVID-19 syndrome: a prospective, community-based study. BMJ Open 11, e048391. https://doi.org/10.1136/bmjopen-2020-048391
Domeniconi, C., Gunopulos, D., Ma, S., Yan, B., Al-Razgan, M., Papadopoulos, D., 2007. Locally adaptive metrics for clustering high dimensional data. Data Min. Knowl. Discov. 14, 63–97. https://doi.org/10.1007/s10618-006-0060-8
Estimated COVID-19 Burden | CDC [WWW Document], 2023. URL https://web.archive.org/web/20230920190907/https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/burden.html (accessed 8.5.24).
Fern, X.Z., Lin, W., 2008. Cluster Ensemble Selection. Stat. Anal. Data Min. ASA Data Sci. J. 1, 128–141. https://doi.org/10.1002/sam.10008
Fernández-de-las-Peñas, C., Martín-Guerrero, J.D., Florencio, L.L., Navarro-Pardo, E., Rodríguez-Jiménez, J., Torres-Macho, J., Pellicer-Valero, O.J., 2023. Clustering analysis reveals different profiles associating long-term post-COVID symptoms, COVID-19 symptoms at hospital admission and previous medical co-morbidities in previously hospitalized COVID-19 survivors. Infection 51, 61–69. https://doi.org/10.1007/s15010-022-01822-x
Fjelltveit, E.B., Blomberg, B., Kuwelker, K., Zhou, F., Onyango, T.B., Brokstad, K.A., Elyanow, R., Kaplan, I.M., Tøndel, C., Mohn, K.G.I., Özgümüş, T., Cox, R.J., Langeland, N., Bergen COVID-19 Research Group, 2023. Symptom Burden and Immune Dynamics 6 to 18 Months Following Mild Severe Acute Respiratory Syndrome Coronavirus 2 Infection (SARS-CoV-2): A Case-control Study. Clin. Infect. Dis. 76, e60–e70. https://doi.org/10.1093/cid/ciac655
Fogarty, H., Townsend, L., Morrin, H., Ahmad, A., Comerford, C., Karampini, E., Englert, H., Byrne, M., Bergin, C., O’Sullivan, J.M., Martin‐Loeches, I., Nadarajan, P., Bannan, C., Mallon, P.W., Curley, G.F., Preston, R.J.S., Rehill, A.M., McGonagle, D., Cheallaigh, C.N., Baker, R.I., Renné, T., Ward, S.E., O’Donnell, J.S., O’Connell, N., Ryan, K., Kenny, D., Fazavana, J., 2021. Persistent endotheliopathy in the pathogenesis of long COVID syndrome. J. Thromb. Haemost. 19, 2546–2553. https://doi.org/10.1111/jth.15490
Glorot, X., Bengio, Y., 2010. Understanding the difficulty of training deep feedforward neural networks, in: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics. Presented at the Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, JMLR Workshop and Conference Proceedings, pp. 249–256.
Golalipour, K., Akbari, E., Hamidi, S.S., Lee, M., Enayatifar, R., 2021. From clustering to clustering ensemble selection: A review. Eng. Appl. Artif. Intell. 104, 104388. https://doi.org/10.1016/j.engappai.2021.104388
Harding, J.L., Oviedo, S.A., Ali, M.K., Ofotokun, I., Gander, J.C., Patel, S.A., Magliano, D.J., Patzer, R.E., 2023. The bidirectional association between diabetes and long-COVID-19 – A systematic review. Diabetes Res. Clin. Pract. 195. https://doi.org/10.1016/j.diabres.2022.110202
Hartle, M., Bateman, L., Vernon, S.D., 2021. Dissecting the nature of post-exertional malaise. Fatigue Biomed. Health Behav. 9, 33–44. https://doi.org/10.1080/21641846.2021.1905415
Holtzman, C.S., Bhatia, S., Cotler, J., Jason, L.A., 2019. Assessment of Post-Exertional Malaise (PEM) in Patients with Myalgic Encephalomyelitis (ME) and Chronic Fatigue Syndrome (CFS): A Patient-Driven Survey. Diagnostics 9, 26. https://doi.org/10.3390/diagnostics9010026
Hughes, S.E., Haroon, S., Subramanian, A., McMullan, C., Aiyegbusi, O.L., Turner, G.M., Jackson, L., Davies, E.H., Frost, C., McNamara, G., Price, G., Matthews, K., Camaradou, J., Ormerod, J., Walker, A., Calvert, M.J., 2022. Development and validation of the symptom burden questionnaire for long covid (SBQ-LC): Rasch analysis. BMJ 377, e070230. https://doi.org/10.1136/bmj-2022-070230
Jackson, M.L., Bruck, D., 2012. Sleep Abnormalities in Chronic Fatigue Syndrome/Myalgic Encephalomyelitis: A Review. J. Clin. Sleep Med. JCSM Off. Publ. Am. Acad. Sleep Med. 8, 719–728. https://doi.org/10.5664/jcsm.2276
Jason, L.A., Evans, M., So, S., Scott, J., Brown, A., 2015. Problems in Defining Post-Exertional Malaise. J. Prev. Interv. Community 43, 20–31. https://doi.org/10.1080/10852352.2014.973239
Kedor, C., Freitag, H., Meyer-Arndt, L., Wittke, K., Hanitsch, L.G., Zoller, T., Steinbeis, F., Haffke, M., Rudolf, G., Heidecker, B., Bobbert, T., Spranger, J., Volk, H.-D., Skurk, C., Konietschke, F., Paul, F., Behrends, U., Bellmann-Strobl, J., Scheibenbogen, C., 2022. A prospective observational study of post-COVID-19 chronic fatigue syndrome following the first pandemic wave in Germany and biomarkers associated with symptom severity. Nat. Commun. 13, 5104. https://doi.org/10.1038/s41467-022-32507-6
Kenny, G., McCann, K., O’Brien, C., Savinelli, S., Tinago, W., Yousif, O., Lambert, J.S., O’Broin, C., Feeney, E.R., De Barra, E., Doran, P., Mallon, P.W.G., All-Ireland Infectious Diseases (AIID) Cohort Study Group, 2022. Identification of Distinct Long COVID Clinical Phenotypes Through Cluster Analysis of Self-Reported Symptoms. Open Forum Infect. Dis. 9, ofac060. https://doi.org/10.1093/ofid/ofac060
Klein, J., Wood, J., Jaycox, J.R., Dhodapkar, R.M., Lu, P., Gehlhausen, J.R., Tabachnikova, A., Greene, K., Tabacof, L., Malik, A.A., Silva Monteiro, V., Silva, J., Kamath, K., Zhang, M., Dhal, A., Ott, I.M., Valle, G., Peña-Hernández, M., Mao, T., Bhattacharjee, B., Takahashi, T., Lucas, C., Song, E., McCarthy, D., Breyman, E., Tosto-Mancuso, J., Dai, Y., Perotti, E., Akduman, K., Tzeng, T.J., Xu, L., Geraghty, A.C., Monje, M., Yildirim, I., Shon, J., Medzhitov, R., Lutchmansingh, D., Possick, J.D., Kaminski, N., Omer, S.B., Krumholz, H.M., Guan, L., Dela Cruz, C.S., van Dijk, D., Ring, A.M., Putrino, D., Iwasaki, A., 2023. Distinguishing features of long COVID identified through immune profiling. Nature 623, 139–148. https://doi.org/10.1038/s41586-023-06651-y
Kohno, R., Cannom, D.S., Olshansky, B., Xi, S.C., Krishnappa, D., Adkisson, W.O., Norby, F.L., Fedorowski, A., Benditt, D.G., 2021. Mast Cell Activation Disorder and Postural Orthostatic Tachycardia Syndrome: A Clinical Association. J. Am. Heart Assoc. 10, e021002. https://doi.org/10.1161/JAHA.121.021002
Kucirka, L.M., Lauer, S.A., Laeyendecker, O., Boon, D., Lessler, J., 2020. Variation in False-Negative Rate of Reverse Transcriptase Polymerase Chain Reaction–Based SARS-CoV-2 Tests by Time Since Exposure. Ann. Intern. Med. 173, 262–267. https://doi.org/10.7326/M20-1495
Le Bon, O., Fischler, B., Hoffmann, G., Murphy, J.R., De Meirleir, K., Cluydts, R., Pelc, I., 2000. How significant are primary sleep disorders and sleepiness in the chronic fatigue syndrome? Sleep Res. Online SRO 3, 43–48.
Lim, S.H., Ju, H.J., Han, J.H., Lee, J.H., Lee, W.-S., Bae, J.M., Lee, S., 2023. Autoimmune and Autoinflammatory Connective Tissue Disorders Following COVID-19. JAMA Netw. Open 6, e2336120. https://doi.org/10.1001/jamanetworkopen.2023.36120
Lloyd, S., 1982. Least squares quantization in PCM. IEEE Trans. Inf. Theory 28, 129–137. https://doi.org/10.1109/TIT.1982.1056489
Lorman, V., Song, X., Rao, S., Allen, A.J., Utidjian, L., Charles Bailey, L., 2023. 1362. Pediatric long COVID subphenotypes: an EHR-based study from the RECOVER program. Open Forum Infect. Dis. 10, ofad500.1199. https://doi.org/10.1093/ofid/ofad500.1199
McInnes, L., Healy, J., Melville, J., 2020. UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction. https://doi.org/10.48550/arXiv.1802.03426
McLachlan, G.J., Lee, S.X., Rathnayake, S.I., 2019. Finite Mixture Models. Annu. Rev. Stat. Its Appl. 6, 355–378. https://doi.org/10.1146/annurev-statistics-031017-100325
Morin, S., Legault, R., Laliberté, F., Bakk, Z., Giguère, C.-É., de la Sablonnière, R., Lacourse, É., 2024. StepMix: A Python Package for Pseudo-Likelihood Estimation of Generalized Mixture Models with External Variables. https://doi.org/10.48550/arXiv.2304.03853
Parker, M., Sawant, H.B., Flannery, T., Tarrant, R., Shardha, J., Bannister, R., Ross, D., Halpin, S., Greenwood, D.C., Sivan, M., 2023. Effect of using a structured pacing protocol on post-exertional symptom exacerbation and health status in a longitudinal cohort with the post-COVID-19 syndrome. J. Med. Virol. 95, e28373. https://doi.org/10.1002/jmv.28373
Pecoraro, V., Negro, A., Pirotti, T., Trenti, T., 2022. Estimate false-negative RT-PCR rates for SARS-CoV-2. A systematic review and meta-analysis. Eur. J. Clin. Invest. 52, e13706. https://doi.org/10.1111/eci.13706
Peluso, M.J., Deitchman, A.N., Torres, L., Iyer, N.S., Munter, S.E., Nixon, C.C., Donatelli, J., Thanh, C., Takahashi, S., Hakim, J., Turcios, K., Janson, O., Hoh, R., Tai, V., Hernandez, Y., Fehrman, E.A., Spinelli, M.A., Gandhi, M., Trinh, L., Wrin, T., Petropoulos, C.J., Aweeka, F.T., Rodriguez-Barraquer, I., Kelly, J.D., Martin, J.N., Deeks, S.G., Greenhouse, B., Rutishauser, R.L., Henrich, T.J., 2021. Long-term SARS-CoV-2-specific immune and inflammatory responses in individuals recovering from COVID-19 with and without post-acute symptoms. Cell Rep. 36. https://doi.org/10.1016/j.celrep.2021.109518
Pollack, B., von Saltza, E., McCorkell, L., Santos, L., Hultman, A., Cohen, A.K., Soares, L., 2023. Female reproductive health impacts of Long COVID and associated illnesses including ME/CFS, POTS, and connective tissue disorders: a literature review. Front. Rehabil. Sci. 4, 1122673. https://doi.org/10.3389/fresc.2023.1122673
Prasannan, N., Heightman, M., Hillman, T., Wall, E., Bell, R., Kessler, A., Neave, L., Doyle, A., Devaraj, A., Singh, D., Dehbi, H.-M., Scully, M., 2022. Impaired exercise capacity in post–COVID-19 syndrome: the role of VWF-ADAMTS13 axis. Blood Adv. 6, 4041–4048. https://doi.org/10.1182/bloodadvances.2021006944
Pretorius, E., Venter, C., Laubscher, G.J., Kotze, M.J., Oladejo, S.O., Watson, L.R., Rajaratnam, K., Watson, B.W., Kell, D.B., 2022. Prevalence of symptoms, comorbidities, fibrin amyloid microclots and platelet pathology in individuals with Long COVID/Post-Acute Sequelae of COVID-19 (PASC). Cardiovasc. Diabetol. 21, 148. https://doi.org/10.1186/s12933-022-01579-5
Re’em, Y., Stelson, E.A., Davis, H.E., McCorkell, L., Wei, H., Assaf, G., Akrami, A., 2023. Factors associated with psychiatric outcomes and coping in Long COVID. Nat. Ment. Health 1, 361–372. https://doi.org/10.1038/s44220-023-00064-6
Romano, S., Vinh, N.X., Bailey, J., Verspoor, K., 2016. Adjusting for chance clustering comparison measures. J Mach Learn Res 17, 4635–4666.
Rousseeuw, P.J., 1987. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65. https://doi.org/10.1016/0377-0427(87)90125-7
Shaw, B.H., Stiles, L.E., Bourne, K., Green, E.A., Shibao, C.A., Okamoto, L.E., Garland, E.M., Gamboa, A., Diedrich, A., Raj, V., Sheldon, R.S., Biaggioni, I., Robertson, D., Raj, S.R., 2019. The face of postural tachycardia syndrome – insights from a large cross-sectional online community-based survey. J. Intern. Med. 286, 438–448. https://doi.org/10.1111/joim.12895
Silva, J., Takahashi, T., Wood, J., Lu, P., Tabachnikova, A., Gehlhausen, J.R., Greene, K., Bhattacharjee, B., Monteiro, V.S., Lucas, C., Dhodapkar, R.M., Tabacof, L., Peña-Hernandez, M., Kamath, K., Mao, T., Mccarthy, D., Medzhitov, R., Dijk, D. van, Krumholz, H.M., Guan, L., Putrino, D., Iwasaki, A., 2024. Sex differences in symptomatology and immune profiles of Long COVID. https://doi.org/10.1101/2024.02.29.24303568
Sinha, P., Calfee, C.S., Delucchi, K.L., 2021. Practitioner’s Guide to Latent Class Analysis: Methodological Considerations and Common Pitfalls. Crit. Care Med. 49, e63–e79. https://doi.org/10.1097/CCM.0000000000004710
Solomon, L., Reeves, W.C., 2004. Factors Influencing the Diagnosis of Chronic Fatigue Syndrome. Arch. Intern. Med. 164, 2241–2245. https://doi.org/10.1001/archinte.164.20.2241
Soriano, J.B., Murthy, S., Marshall, J.C., Relan, P., Diaz, J.V., 2022. A clinical case definition of post-COVID-19 condition by a Delphi consensus. Lancet Infect. Dis. 22, e102–e107. https://doi.org/10.1016/S1473-3099(21)00703-9
Soung, A.L., Vanderheiden, A., Nordvig, A.S., Sissoko, C.A., Canoll, P., Mariani, M.B., Jiang, X., Bricker, T., Rosoklija, G.B., Arango, V., Underwood, M., Mann, J.J., Dwork, A.J., Goldman, J.E., Boon, A.C.M., Boldrini, M., Klein, R.S., 2022. COVID-19 induces CNS cytokine expression and loss of hippocampal neurogenesis. Brain 145, 4193–4201. https://doi.org/10.1093/brain/awac270
Stein, S.R., Ramelli, S.C., Grazioli, A., Chung, J.-Y., Singh, M., Yinda, C.K., Winkler, C.W., Sun, J., Dickey, J.M., Ylaya, K., Ko, S.H., Platt, A.P., Burbelo, P.D., Quezado, M., Pittaluga, S., Purcell, M., Munster, V.J., Belinky, F., Ramos-Benitez, M.J., Boritz, E.A., Lach, I.A., Herr, D.L., Rabin, J., Saharia, K.K., Madathil, R.J., Tabatabai, A., Soherwardi, S., McCurdy, M.T., Peterson, K.E., Cohen, J.I., de Wit, E., Vannella, K.M., Hewitt, S.M., Kleiner, D.E., Chertow, D.S., 2022. SARS-CoV-2 infection and persistence in the human body and brain at autopsy. Nature 612, 758–763. https://doi.org/10.1038/s41586-022-05542-y
Stussman, B., Williams, A., Snow, J., Gavin, A., Scott, R., Nath, A., Walitt, B., 2020. Characterization of Post–exertional Malaise in Patients With Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Front. Neurol. 11. https://doi.org/10.3389/fneur.2020.01025
Swank, Z., Senussi, Y., Manickas-Hill, Z., Yu, X.G., Li, J.Z., Alter, G., Walt, D.R., 2023. Persistent Circulating Severe Acute Respiratory Syndrome Coronavirus 2 Spike Is Associated With Post-acute Coronavirus Disease 2019 Sequelae. Clin. Infect. Dis. 76, e487–e490. https://doi.org/10.1093/cid/ciac722
Sylvester, S.V., Rusu, R., Chan, B., Bellows, M., O’Keefe, C., Nicholson, S., 2022. Sex differences in sequelae from COVID-19 infection and in long COVID syndrome: a review. Curr. Med. Res. Opin. 38, 1391–1399. https://doi.org/10.1080/03007995.2022.2081454
Turner, S., Khan, M.A., Putrino, D., Woodcock, A., Kell, D.B., Pretorius, E., 2023. Long COVID: pathophysiological factors and abnormalities of coagulation. Trends Endocrinol. Metab. 34, 321–344. https://doi.org/10.1016/j.tem.2023.03.002
Verheij, R.A., Curcin, V., Delaney, B.C., McGilchrist, M.M., 2018. Possible Sources of Bias in Primary Care Electronic Health Record Data Use and Reuse. J. Med. Internet Res. 20, e185. https://doi.org/10.2196/jmir.9134
Vinh, N.X., Epps, J., Bailey, J., 2010. Information Theoretic Measures for Clusterings Comparison: Variants, Properties, Normalization and Correction for Chance. J Mach Learn Res 11, 2837–2854.
von Luxburg, U., 2007. A tutorial on spectral clustering. Stat. Comput. 17, 395–416. https://doi.org/10.1007/s11222-007-9033-z
Wu, H.-F., Yu, W., Saito-Diaz, K., Huang, C.-W., Carey, J., Lefcort, F., Hart, G.W., Liu, H.-X., Zeltner, N., 2022. Norepinephrine transporter defects lead to sympathetic hyperactivity in Familial Dysautonomia models. Nat. Commun. 13, 7032. https://doi.org/10.1038/s41467-022-34811-7
Yan, C., Zhang, X., Yang, Y., Kang, K., Were, M.C., Embí, P., Patel, M.B., Malin, B.A., Kho, A.N., Chen, Y., 2023. Differences in Health Professionals’ Engagement With Electronic Health Records Based on Inpatient Race and Ethnicity. JAMA Netw. Open 6, e2336383. https://doi.org/10.1001/jamanetworkopen.2023.36383
Yin, K., Peluso, M.J., Luo, X., Thomas, R., Shin, M.-G., Neidleman, J., Andrew, A., Young, K.C., Ma, T., Hoh, R., Anglin, K., Huang, B., Argueta, U., Lopez, M., Valdivieso, D., Asare, K., Deveau, T.-M., Munter, S.E., Ibrahim, R., Ständker, L., Lu, S., Goldberg, S.A., Lee, S.A., Lynch, K.L., Kelly, J.D., Martin, J.N., Münch, J., Deeks, S.G., Henrich, T.J., Roan, N.R., 2024. Long COVID manifests with T cell dysregulation, inflammation and an uncoordinated adaptive immune response to SARS-CoV-2. Nat. Immunol. 25, 218–225. https://doi.org/10.1038/s41590-023-01724-6
Zelnik-Manor, L., Perona, P., 2004. Self-tuning spectral clustering, in: Proceedings of the 17th International Conference on Neural Information Processing Systems, NIPS’04. MIT Press, Cambridge, MA, USA, pp. 1601–1608.
Zhang, D., Zhou, Y., Ma, Y., Chen, P., Tang, J., Yang, B., Li, H., Liang, M., Xue, Y., Liu, Y., Zhang, J., Wang, X., 2023. Gut Microbiota Dysbiosis Correlates With Long COVID-19 at One-Year After Discharge. J. Korean Med. Sci. 38, e120. https://doi.org/10.3346/jkms.2023.38.e120
Zhang, H., Zang, C., Xu, Z., Zhang, Yongkang, Xu, J., Bian, J., Morozyuk, D., Khullar, D., Zhang, Yiye, Nordvig, A.S., Schenck, E.J., Shenkman, E.A., Rothman, R.L., Block, J.P., Lyman, K., Weiner, M.G., Carton, T.W., Wang, F., Kaushal, R., 2023. Data-driven identification of post-acute SARS-CoV-2 infection subphenotypes. Nat. Med. 29, 226–235. https://doi.org/10.1038/s41591-022-02116-3
Ziauddeen, N., Gurdasani, D., O’Hara, M.E., Hastie, C., Roderick, P., Yao, G., Alwan, N.A., 2022. Characteristics and impact of Long Covid: Findings from an online survey. PLOS ONE 17, e0264331. https://doi.org/10.1371/journal.pone.0264331
Zollner, A., Koch, R., Jukic, A., Pfister, A., Meyer, M., Rössler, A., Kimpel, J., Adolph, T.E., Tilg, H., 2022. Postacute COVID-19 is Characterized by Gut Viral Antigen Persistence in Inflammatory Bowel Diseases. Gastroenterology 163, 495-506.e8. https://doi.org/10.1053/j.gastro.2022.04.037