Akbari GA, Arab SM, Alikkhani HA, Allahdadi I, Arzanesh MH (2007) Isolation and selection of indigenous Azospirillum spp. and the IAA of superior strains effects on wheat roots. World J Agric Sci 3.4:523–529
Alami Y, Achouak W, Marol C, Heulin T (2000) Rhizosphere Soil Aggregation and Plant Growth Promotion of Sunflowers by an Exopolysaccharide-Producing Rhizobium sp. Strain Isolated from Sunflower Roots. Appl Environ Microbiol 66:3393–3398. https://doi.org/10.1128/AEM.66.8.3393-3398.2000
Allsup C, Lankau R (2019) Migration of soil microbes may promote tree seedling tolerance to drying conditions. Ecology 100:e02729. https://doi.org/10.1002/ecy.2729
Allsup CM, George I, Lankau RA (2023) Shifting microbial communities can enhance tree tolerance to changing climates. Science 380:835–840. https://doi.org/10.1126/science.adf2027
Anderegg WRL (2015) Spatial and temporal variation in plant hydraulic traits and their relevance for climate change impacts on vegetation. New Phytologist 205:1008–1014. https://doi.org/10.1111/nph.12907
Anderegg WRL, Klein T, Bartlett M, Sack L, Pellegrini AFA, Choat B, Jansen S (2016) Meta-analysis reveals that hydraulic traits explain cross-species patterns of drought-induced tree mortality across the globe. Proc Natl Acad Sci USA 113:5024–5029. https://doi.org/10.1073/pnas.1525678113
Anderegg WRL, Konings AG, Trugman AT, Yu K, Bowling DR, Gabbitas R, Karp DS, Pacala S, Sperry JS, Sulman BN, Zenes N (2018) Hydraulic diversity of forests regulates ecosystem resilience during drought. Nature 561:538–541. https://doi.org/10.1038/s41586-018-0539-7
Asbjornsen H, Campbell JL, Jennings KA, Vadeboncoeur MA, McIntire C, Templer PH, Phillips RP, Bauerle TL, Dietze MC, Frey SD, Groffman PM, Guerrieri R, Hanson PJ, Kelsey EP, Knapp AK, McDowell NG, Meir P, Novick KA, Ollinger SV, Pockman WT, Schaberg PG, Wullschleger SD, Smith MD, Rustad LE (2018) Guidelines and considerations for designing field experiments simulating precipitation extremes in forest ecosystems. Methods Ecol Evol 9:2310–2325. https://doi.org/10.1111/2041-210X.13094
Augé RM, Stodola AJW, Tims JE, Saxton AM (2001) Moisture retention properties of a mycorrhizal soil. Plant Soil 230:87–97. https://doi.org/10.1023/A:1004891210871
Bainard LD, Klironomos JN, Gordon AM (2011) The mycorrhizal status and colonization of 26 tree species growing in urban and rural environments. Mycorrhiza 21:91–96. https://doi.org/10.1007/s00572-010-0314-6
Bouskill NJ, Lim HC, Borglin S, Salve R, Wood TE, Silver WL, Brodie EL (2013) Pre-exposure to drought increases the resistance of tropical forest soil bacterial communities to extended drought. ISME J 7:384–394. https://doi.org/10.1038/ismej.2012.113
Büntgen U, Urban O, Krusic PJ, Rybníček M, Kolář T, Kyncl T, Ač A, Koňasová E, Čáslavský J, Esper J, Wagner S, Saurer M, Tegel W, Dobrovolný P, Cherubini P, Reinig F, Trnka M (2021) Recent European drought extremes beyond Common Era background variability. Nat Geosci 14:190–196. https://doi.org/10.1038/s41561-021-00698-0
Cahill JF, Cale JA, Karst J, Bao T, Pec GJ, Erbilgin N (2017) No silver bullet: different soil handling techniques are useful for different research questions, exhibit differential type I and II error rates, and are sensitive to sampling intensity. New Phytol 216:11–14. https://doi.org/10.1111/nph.14141
Cavender-Bares J, Bazzaz FA (2000) Changes in drought response strategies with ontogeny in Quercus rubra: implications for scaling from seedlings to mature trees. Oecologia 124:8–18. https://doi.org/10.1007/PL00008865
Chapin FS, Schulze E, Mooney HA (1990) The Ecology and Economics of Storage in Plants. Annu Rev Ecol Syst 21:423–447. https://doi.org/10.1146/annurev.es.21.110190.002231
Choat B, Brodribb TJ, Brodersen CR, Duursma RA, López R, Medlyn BE (2018) Triggers of tree mortality under drought. Nature 558:531–539. https://doi.org/10.1038/s41586-018-0240-x
Chow PS, Landhausser SM (2004) A method for routine measurements of total sugar and starch content in woody plant tissues. Tree Physiol 24:1129–1136. https://doi.org/10.1093/treephys/24.10.1129
Cohen AC, Bottini R, Pontin M, Berli FJ, Moreno D, Boccanlandro H, Travaglia CN, Piccoli PN (2015) Azospirillum brasilense ameliorates the response of Arabidopsis thaliana to drought mainly via enhancement of ABA levels. Physiol Plantarum 153:79–90. https://doi.org/10.1111/ppl.12221
Costa OYA, Raaijmakers JM, Kuramae EE (2018) Microbial Extracellular Polymeric Substances: Ecological Function and Impact on Soil Aggregation. Front Microbiol 9:1636. https://doi.org/10.3389/fmicb.2018.01636
Di Pietro M, Churin J-L, Garbaye J (2007) Differential ability of ectomycorrhizas to survive drying. Mycorrhiza 17:547–550. https://doi.org/10.1007/s00572-007-0113-x
Dickman LT, Mcdowell NG, Sevanto S, Pangle RE, Pockman WT (2015) Carbohydrate dynamics and mortality in a piñon‐juniper woodland under three future precipitation scenarios. Plant Cell Environ 38:729–739. https://doi.org/10.1111/pce.12441
Dietze MC, Sala A, Carbone MS, Czimczik CI, Mantooth JA, Richardson AD, Vargas R (2014) Nonstructural Carbon in Woody Plants. Annu Rev Plant Biol 65:667–687. https://doi.org/10.1146/annurev-arplant-050213-040054
Dunabeitia MK, Hormilla S, Garcia-Plazaola JI, Txarterina K, Arteche U, Becerril JM (2004) Differential responses of three fungal species to environmental factors and their role in the mycorrhization of Pinus radiata D. Don. Mycorrhiza 14:11–18. https://doi.org/10.1007/s00572-003-0270-5
Ebrahimi-Zarandi M, Etesami H, Glick BR (2023) Fostering plant resilience to drought with Actinobacteria: Unveiling perennial allies in drought stress tolerance. Plant Stress 10:100242. https://doi.org/10.1016/j.stress.2023.100242
Evans S, Allison S, Hawkes C (2022) Microbes, memory and moisture: Predicting microbial moisture responses and their impact on carbon cycling. Funct Ecol 36:1430–1441. https://doi.org/10.1111/1365-2435.14034
Forchetti G, Masciarelli O, Alemano S, Alvarez D, Abdala G (2007) Endophytic bacteria in sunflower (Helianthus annuus L.): isolation, characterization, and production of jasmonates and abscisic acid in culture medium. Appl Microbiol Biotechnol 76:1145–1152. https://doi.org/10.1007/s00253-007-1077-7
Hartig F (2017) Package ‘DHARMa’
Hussain MB, Zahir ZA, Asghar HN, Asgher M (2014) Can Catalase and Exopolysaccharides Producing Rhizobia Ameliorate Drought Stress in Wheat? Int J Agric Bot 16:3–13
Kannenberg SA, Cabon A, Babst F, Belmecheri S, Delpierre N, Guerrieri R, Maxwell JT, Meinzer FC, Moore DJP, Pappas C, Ueyama M, Ulrich DEM, Voelker SL, Woodruff DR, Anderegg WRL (2022) Drought-induced decoupling between carbon uptake and tree growth impacts forest carbon turnover time. Agricultural and Forest Meteorology 322:108996. https://doi.org/10.1016/j.agrformet.2022.108996
Kannenberg SA, Maxwell JT, Pederson N, D’Orangeville L, Ficklin DL, Phillips RP (2019) Drought legacies are dependent on water table depth, wood anatomy and drought timing across the eastern US. Ecol Lett 22:119–127. https://doi.org/10.1111/ele.13173
Kannenberg SA, Phillips RP (2017) Soil microbial communities buffer physiological responses to drought stress in three hardwood species. Oecologia 183:631–641. https://doi.org/10.1007/s00442-016-3783-2
Kannenberg SA, Phillips RP (2020) Non-structural carbohydrate pools not linked to hydraulic strategies or carbon supply in tree saplings during severe drought and subsequent recovery. Tree Physiol 40:259–271. https://doi.org/10.1093/treephys/tpz132
Kozlowski TT (1992) Carbohydrate sources and sinks in woody plants. Bot Rev 58:107–222. https://doi.org/10.1007/BF02858600
Kumar A, Verma JP (2018) Does plant—Microbe interaction confer stress tolerance in plants: A review? Microbiological Research 207:41–52. https://doi.org/10.1016/j.micres.2017.11.004
Lau JA, Lennon JT (2012) Rapid responses of soil microorganisms improve plant fitness in novel environments. Proc Natl Acad Sci USA 109:14058–14062. https://doi.org/10.1073/pnas.1202319109
Leizeaga A, Hicks LC, Manoharan L, Hawkes CV, Rousk J (2021) Drought legacy affects microbial community trait distributions related to moisture along a savannah grassland precipitation gradient. Journal of Ecology 109:3195–3210. https://doi.org/10.1111/1365-2745.13550
Lenth RV (2016) Least-Squares Means: The R Package lsmeans. J Stat Soft 69. https://doi.org/10.18637/jss.v069.i01
Martínez‐Vilalta J, Sala A, Asensio D, Galiano L, Hoch G, Palacio S, Piper FI, Lloret F (2016) Dynamics of non‐structural carbohydrates in terrestrial plants: a global synthesis. Ecol Monogr 86:495–516. https://doi.org/10.1002/ecm.1231
Masson-Delmotte V, Zhai P, Pirani A, Connors SL, Pean C, Berger S, Caud N, Chen Y, Goldfarb L, Gomis MI, Huang M, Leitzell K, Lonnoy E, Matthews JBR, Maycock TK, Waterfield T, Yelekci O, Yu R, Zhou B (2022) IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press
McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, Sperry J, West A, Williams DG, Yepez EA (2008) Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol 178:719–739. https://doi.org/10.1111/j.1469-8137.2008.02436.x
McDowell NG (2011) Mechanisms Linking Drought, Hydraulics, Carbon Metabolism, and Vegetation Mortality. Plant Physiology 155:1051–1059. https://doi.org/10.1104/pp.110.170704
Mencuccini M, Minunno F, Salmon Y, Martínez‐Vilalta J, Hölttä T (2015) Coordination of physiological traits involved in drought‐induced mortality of woody plants. New Phytol 208:396–409. https://doi.org/10.1111/nph.13461
Munoz-Ucros J, Wilhelm RC, Buckley DH, Bauerle TL (2022) Drought legacy in rhizosphere bacterial communities alters subsequent plant performance. Plant Soil 471:443–461. https://doi.org/10.1007/s11104-021-05227-x
Naylor D, Coleman-Derr D (2018) Drought Stress and Root-Associated Bacterial Communities. Front Plant Sci 8:2223. https://doi.org/10.3389/fpls.2017.02223
O’Brien MJ, Leuzinger S, Philipson CD, Tay J, Hector A (2014) Drought survival of tropical tree seedlings enhanced by non-structural carbohydrate levels. Nature Clim Change 4:710–714. https://doi.org/10.1038/nclimate2281
Ochoa‐Hueso R, Collins SL, Delgado‐Baquerizo M, Hamonts K, Pockman WT, Sinsabaugh RL, Smith MD, Knapp AK, Power SA (2018) Drought consistently alters the composition of soil fungal and bacterial communities in grasslands from two continents. Glob Chang Biol 24:2818–2827. https://doi.org/10.1111/gcb.14113
Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao S, Rautiainen A, Sitch S, Hayes D (2011) A Large and Persistent Carbon Sink in the World’s Forests. Science 333:988–993. https://doi.org/10.1126/science.1201609
Pavithra D, Yapa N (2018) Arbuscular mycorrhizal fungi inoculation enhances drought stress tolerance of plants. Groundw Sustain Dev 7:490–494. https://doi.org/10.1016/j.gsd.2018.03.005
Phillips RP, Ibáñez I, D’Orangeville L, Hanson PJ, Ryan MG, McDowell NG (2016) A belowground perspective on the drought sensitivity of forests: Towards improved understanding and simulation. Forest Ecology and Management 380:309–320. https://doi.org/10.1016/j.foreco.2016.08.043
Porcel R, Ruiz-Lozano JM (2004) Arbuscular mycorrhizal influence on leaf water potential, solute accumulation, and oxidative stress in soybean plants subjected to drought stress. J Exp Bot 55:1743–1750. https://doi.org/10.1093/jxb/erh188
Redmile-Gordon MA, Evershed RP, Hirsch PR, White RP, Goulding KWT (2015) Soil organic matter and the extracellular microbial matrix show contrasting responses to C and N availability. Soil Biol Biochem 88:257–267. https://doi.org/10.1016/j.soilbio.2015.05.025
Roberson EB, Firestone MK (1992) Relationship between Desiccation and Exopolysaccharide Production in a Soil Pseudomonas sp. Appl Environ Microbiol 58:1284–1291. https://doi.org/10.1128/aem.58.4.1284-1291.1992
Roman DT, Novick KA, Brzostek ER, Dragoni D, Rahman F, Phillips RP (2015) The role of isohydric and anisohydric species in determining ecosystem-scale response to severe drought. Oecologia 179:641–654. https://doi.org/10.1007/s00442-015-3380-9
Sala A, Woodruff DR, Meinzer FC (2012) Carbon dynamics in trees: feast or famine? Tree Physiol 32:764–775. https://doi.org/10.1093/treephys/tpr143
Salomon MV, Bottini R, De Souza Filho GA, Cohen AC, Moreno D, Gil M, Piccoli P (2014) Bacteria isolated from roots and rhizosphere of Vitis vinifera retard water losses, induce abscisic acid accumulation and synthesis of defense‐related terpenes in in vitro cultured grapevine. Physiol Plantarum 151:359–374. https://doi.org/10.1111/ppl.12117
Seethepalli A, York LM (2020) RhizoVision Explorer - Interactive software for generalized root image analysis designed for everyone
Smith SE, David J. Read, TotalBoox, TBX (2010) Mycorrhizal Symbiosis. Elsevier Science
Tardieu F, Simonneau T (1998) Variability among species of stomatal control under fluctuating soil water status and evaporative demand: modelling isohydric and anisohydric behaviours. J Exp Bot 49:419–432. https://doi.org/10.1093/jxb/49.Special_Issue.419
Tomasella M, Petrussa E, Petruzzellis F, Nardini A, Casolo V (2019) The Possible Role of Non-Structural Carbohydrates in the Regulation of Tree Hydraulics. Int J Mol Sci 21:144. https://doi.org/10.3390/ijms21010144
Torchiano M (2016) Effsize - a package for efficient effect size computation
Tsukanova KA, Сhеbоtаr VК, Meyer JJM, Bibikova TN (2017) Effect of plant growth-promoting Rhizobacteria on plant hormone homeostasis. S Afr J Bot 113:91–102. https://doi.org/10.1016/j.sajb.2017.07.007
Williams A, De Vries FT (2020) Plant root exudation under drought: implications for ecosystem functioning. New Phytologist 225:1899–1905. https://doi.org/10.1111/nph.16223
Wipf HM-L, Bùi T-N, Coleman-Derr D (2021) Distinguishing Between the Impacts of Heat and Drought Stress on the Root Microbiome of Sorghum bicolor. Phytobiomes J 5:166–176. https://doi.org/10.1094/PBIOMES-07-20-0052-R
Woodruff DR, Meinzer FC (2011) Water stress, shoot growth and storage of non-structural carbohydrates along a tree height gradient in a tall conifer: Growth, water stress and carbohydrate storage. Plant Cell Environ 34:1920–1930. https://doi.org/10.1111/j.1365-3040.2011.02388.x
Yi K, Dragoni D, Phillips RP, Roman DT, Novick KA (2017) Dynamics of stem water uptake among isohydric and anisohydric species experiencing a severe drought. Tree Physiol 37:1379–1392. https://doi.org/10.1093/treephys/tpw126
Yin H, Wheeler E, Phillips RP (2014) Root-induced changes in nutrient cycling in forests depend on exudation rates. Soil Biol Biochem 78:213–221. https://doi.org/10.1016/j.soilbio.2014.07.022