1 Garcia-Beltran, W. F. et al. Multiple SARS-CoV-2 variants escape neutralization by vaccine-induced humoral immunity. Cell, doi:10.1016/j.cell.2021.03.013 (2021).
2 Li, Q. et al. The Impact of Mutations in SARS-CoV-2 Spike on Viral Infectivity and Antigenicity. Cell 182, 1284-1294 e1289, doi:10.1016/j.cell.2020.07.012 (2020).
3 Korber, B. et al. Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19 Virus. Cell 182, 812-827 e819, doi:10.1016/j.cell.2020.06.043 (2020).
4 Oude Munnink, B. B. et al. Transmission of SARS-CoV-2 on mink farms between humans and mink and back to humans. Science 371, 172-177, doi:10.1126/science.abe5901 (2021).
5 Koopmans, M. SARS-CoV-2 and the human-animal interface: outbreaks on mink farms. Lancet Infect Dis 21, 18-19, doi:10.1016/S1473-3099(20)30912-9 (2021).
6 WHO. Weekly epidemiological update on COVID-19 - 13 April 2021. doi:https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---13-april-2021.
7 Davies, N. G. et al. Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England. Science 372, doi:10.1126/science.abg3055 (2021).
8 Graham, M. S. et al. Changes in symptomatology, reinfection, and transmissibility associated with the SARS-CoV-2 variant B.1.1.7: an ecological study. Lancet Public Health, doi:10.1016/S2468-2667(21)00055-4 (2021).
9 Shen, X. et al. SARS-CoV-2 Variant B.1.1.7 is Susceptible to Neutralizing Antibodies Elicited by Ancestral Spike Vaccines.
10 Li, Q. et al. SARS-CoV-2 501Y.V2 variants lack higher infectivity but do have immune escape. Cell, doi:10.1016/j.cell.2021.02.042 (2021).
11 Zhou, D. et al. Evidence of escape of SARS-CoV-2 variant B.1.351 from natural and vaccine-induced sera. Cell, doi:10.1016/j.cell.2021.02.037 (2021).
12 Sabino, E. C. et al. Resurgence of COVID-19 in Manaus, Brazil, despite high seroprevalence. Lancet 397, 452-455, doi:10.1016/S0140-6736(21)00183-5 (2021).
13 Naveca, F., Nascimento, V., Souza, V., Corado, A. & Bello, G. COVID-19 epidemic in the Brazilian state of Amazonas was driven by long-term persistence of endemic SARS-CoV-2 lineages and the recent emergence of the new Variant of Concern P.1. (2021).
14 Shen, X. et al. Neutralization of SARS-CoV-2 Variants B.1.429 and B.1.351. The New England journal of medicine, doi:10.1056/NEJMc2103740 (2021).
15 Zhou, H. et al. B.1.526 SARS-CoV-2 variants identified in New York City are neutralized by vaccine-elicited and therapeutic monoclonal antibodies. bioRxiv, doi:10.1101/2021.03.24.436620 (2021).
16 McCallum, M. et al. SARS-CoV-2 immune evasion by variant B.1.427/B.1.429. bioRxiv, doi:10.1101/2021.03.31.437925 (2021).
17 Annavajhala, M. K. et al. A Novel SARS-CoV-2 Variant of Concern, B.1.526, Identified in New York. medRxiv : the preprint server for health sciences, doi:10.1101/2021.02.23.21252259 (2021).
18 Public Health England. SARS-CoV-2 variants of concern and variants under investigation in England. doi:https://www.gov.uk/government/publications/investigation-of-novel-sars-cov-2-variant-variant-of-concern-20201201 (2021).
19 Hogan, C. A. et al. Optimizing SARS-CoV-2 Variant of Concern Screening: Experience from British Columbia, Canada, Early 2021. 2021.2003.2023.21253520, doi:10.1101/2021.03.23.21253520 %J medRxiv (2021).
20 Ikegame, S. et al. Qualitatively distinct modes of Sputnik V vaccine-neutralization escape by SARS-CoV-2 Spike variants. 2021.2003.2031.21254660, doi:10.1101/2021.03.31.21254660 %J medRxiv (2021).
21 Bestle, D. et al. TMPRSS2 and furin are both essential for proteolytic activation of SARS-CoV-2 in human airway cells. Life Sci Alliance 3, doi:10.26508/lsa.202000786 (2020).
22 Zhao, M. M. et al. Cathepsin L plays a key role in SARS-CoV-2 infection in humans and humanized mice and is a promising target for new drug development. Signal Transduct Target Ther 6, 134, doi:10.1038/s41392-021-00558-8 (2021).
23 Hoffmann, M. et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 181, 271-280 e278, doi:10.1016/j.cell.2020.02.052 (2020).
24 Mansbach, R. A. et al. The SARS-CoV-2 Spike Variant D614G Favors an Open Conformational State. bioRxiv, doi:10.1101/2020.07.26.219741 (2020).
25 Starr, T. N. et al. Deep Mutational Scanning of SARS-CoV-2 Receptor Binding Domain Reveals Constraints on Folding and ACE2 Binding. Cell 182, 1295-1310 e1220, doi:10.1016/j.cell.2020.08.012 (2020).
26 Liu, Z. et al. Identification of SARS-CoV-2 spike mutations that attenuate monoclonal and serum antibody neutralization. Cell Host Microbe 29, 477-488 e474, doi:10.1016/j.chom.2021.01.014 (2021).
27 Truong, T. T. et al. Persistent SARS-CoV-2 infection and increasing viral variants in children and young adults with impaired humoral immunity. medRxiv : the preprint server for health sciences, doi:10.1101/2021.02.27.21252099 (2021).
28 McCallum, M. et al. N-terminal domain antigenic mapping reveals a site of vulnerability for SARS-CoV-2. bioRxiv, doi:10.1101/2021.01.14.426475 (2021).