[1] Kappos L, Wolinsky JS, Giovannoni G, Arnold DL, Wang Q, Bernasconi C, et al. Contribution of Relapse-Independent Progression vs Relapse-Associated Worsening to Overall Confirmed Disability Accumulation in Typical Relapsing Multiple Sclerosis in a Pooled Analysis of 2 Randomized Clinical Trials. JAMA Neurol 2020;77:1132–40. https://doi.org/10.1001/jamaneurol.2020.1568.
[2] Warnke C, Hartung H-P. Big data in MS—What can we learn from large international observational studies such as MSBase? Mult Scler J 2020;26:4–5. https://doi.org/10.1177/1352458519868982.
[3] Caro JJ, Ishak KJ. No head-to-head trial? simulate the missing arms. PharmacoEconomics 2010;28:957–67. https://doi.org/10.2165/11537420-000000000-00000.
[4] Signorovitch JE, Sikirica V, Erder MH, Xie J, Lu M, Hodgkins PS, et al. Matching-adjusted indirect comparisons: a new tool for timely comparative effectiveness research. Value Health J Int Soc Pharmacoeconomics Outcomes Res 2012;15:940–7. https://doi.org/10.1016/j.jval.2012.05.004.
[5] Pittock SJ, Barnett M, Bennett JL, Berthele A, de Sèze J, Levy M, et al. Ravulizumab in Aquaporin-4-Positive Neuromyelitis Optica Spectrum Disorder. Ann Neurol 2023;93:1053–68. https://doi.org/10.1002/ana.26626.
[6] Eichler H-G, Abadie E, Breckenridge A, Leufkens H, Rasi G. Open Clinical Trial Data for All? A View from Regulators. PLOS Med 2012;9:e1001202. https://doi.org/10.1371/journal.pmed.1001202.
[7] DATA PROTECTION WORKING PARTY. Opinion 05/2014 on Anonymisation Techniques 2014.
[8] Rocher L, Hendrickx JM, de Montjoye Y-A. Estimating the success of re-identifications in incomplete datasets using generative models. Nat Commun 2019;10:3069. https://doi.org/10.1038/s41467-019-10933-3.
[9] Commission Nationale de l’informatique et des libertés. L’anonymisation de données personnelles 2020. https://www.cnil.fr/fr/lanonymisation-de-donnees-personnelles (accessed December 12, 2023).
[10] Giuffrè M, Shung DL. Harnessing the power of synthetic data in healthcare: innovation, application, and privacy. Npj Digit Med 2023;6:1–8. https://doi.org/10.1038/s41746-023-00927-3.
[11] Zhu J-Y, Krähenbühl P, Shechtman E, Efros AA. Generative Visual Manipulation on the Natural Image Manifold. In: Leibe B, Matas J, Sebe N, Welling M, editors. Comput. Vis. – ECCV 2016, Cham: Springer International Publishing; 2016, p. 597–613. https://doi.org/10.1007/978-3-319-46454-1_36.
[12] Thirunavukarasu AJ, Ting DSJ, Elangovan K, Gutierrez L, Tan TF, Ting DSW. Large language models in medicine. Nat Med 2023;29:1930–40. https://doi.org/10.1038/s41591-023-02448-8.
[13] Demuth S, Paris J, Faddeenkov I, De Sèze J, Gourraud P-A. Clinical applications of deep learning in neuroinflammatory diseases: A scoping review. Rev Neurol (Paris) 2024. https://doi.org/10.1016/j.neurol.2024.04.004.
[14] El Emam K. Seven Ways to Evaluate the Utility of Synthetic Data. IEEE Secur Priv 2020;18:56–9. https://doi.org/10.1109/MSEC.2020.2992821.
[15] Chen Y, Esmaeilzadeh P. Generative AI in Medical Practice: In-Depth Exploration of Privacy and Security Challenges. J Med Internet Res 2024;26:e53008. https://doi.org/10.2196/53008.
[16] G7 Data Protection and Privacy Authorities. Roundtable of G7 Data Protection and Privacy Authorities Statement on Generative AI 2023. https://www.cnil.fr/sites/cnil/files/2023-06/g7roundtable_202306_statement.pdf.
[17] Sun H, Zhu T, Zhang Z, Jin D, Xiong P, Zhou W. Adversarial Attacks Against Deep Generative Models on Data: A Survey. IEEE Trans Knowl Data Eng 2023;35:3367–88. https://doi.org/10.1109/TKDE.2021.3130903.
[18] El Emam K, Mosquera L, Fang X. Validating a membership disclosure metric for synthetic health data. JAMIA Open 2022;5:ooac083. https://doi.org/10.1093/jamiaopen/ooac083.
[19] Guillaudeux M, Rousseau O, Petot J, Bennis Z, Dein C-A, Goronflot T, et al. Patient-centric synthetic data generation, no reason to risk re-identification in biomedical data analysis. Npj Digit Med 2023;6:1–10. https://doi.org/10.1038/s41746-023-00771-5.
[20] Zhao Z, Kunar A, Van der Scheer H, Birke R, Chen LY. CTAB-GAN: Effective Table Data Synthesizing 2021. https://doi.org/10.48550/arXiv.2102.08369.
[21] Nowok B, Raab GM, Dibben C. synthpop: Bespoke Creation of Synthetic Data in R. J Stat Softw 2016;74:1–26. https://doi.org/10.18637/jss.v074.i11.
[22] Giovannoni G, Comi G, Cook S, Rammohan K, Rieckmann P, Soelberg Sørensen P, et al. A placebo-controlled trial of oral cladribine for relapsing multiple sclerosis. N Engl J Med 2010;362:416–26. https://doi.org/10.1056/NEJMoa0902533.
[23] Calabresi PA, Kieseier BC, Arnold DL, Balcer LJ, Boyko A, Pelletier J, et al. Pegylated interferon beta-1a for relapsing-remitting multiple sclerosis (ADVANCE): a randomised, phase 3, double-blind study. Lancet Neurol 2014;13:657–65. https://doi.org/10.1016/S1474-4422(14)70068-7.
[24] GitHub - octopize/saiph: A projection package n.d. https://github.com/octopize/saiph (accessed July 8, 2024).
[25] Giovannoni G, Soelberg Sorensen P, Cook S, Rammohan KW, Rieckmann P, Comi G, et al. Efficacy of Cladribine Tablets in high disease activity subgroups of patients with relapsing multiple sclerosis: A post hoc analysis of the CLARITY study. Mult Scler Houndmills Basingstoke Engl 2019;25:819–27. https://doi.org/10.1177/1352458518771875.
[26] Hello from Octopize Docs | Octopize Docs n.d. https://docs.octopize.io/ (accessed May 23, 2024).
[27] Privacy-by-design generation of two virtual clinical trials in multiple sclerosis and their release as open datasets n.d. https://figshare.com/s/ba49ed0550fd069567e6 (accessed August 16, 2024).
[28] Stanislas Demuth / Privacy-by-design generation of two virtual clinical trials in multiple sclerosis · GitLab. GitLab 2024. https://gitlab.com/stanislas.demuth/avatars-for-randomized-clinical-trials (accessed August 16, 2024).
[29] Vivli - Center for Global Clinical Research Data n.d. https://vivli.org/ (accessed November 4, 2023).
[30] ClinicalStudyDataRequest.com n.d. https://clinicalstudydatarequest.com/ (accessed November 4, 2023).
[31] Badano A, Graff CG, Badal A, Sharma D, Zeng R, Samuelson FW, et al. Evaluation of Digital Breast Tomosynthesis as Replacement of Full-Field Digital Mammography Using an In Silico Imaging Trial. JAMA Netw Open 2018;1:e185474. https://doi.org/10.1001/jamanetworkopen.2018.5474.
[32] Sips FLP, Pappalardo F, Russo G, Bursi R. In silico clinical trials for relapsing-remitting multiple sclerosis with MS TreatSim. BMC Med Inform Decis Mak 2022;22:294. https://doi.org/10.1186/s12911-022-02034-x.
[33] Azizi Z, Zheng C, Mosquera L, Pilote L, El Emam K, GOING-FWD Collaborators. Can synthetic data be a proxy for real clinical trial data? A validation study. BMJ Open 2021;11:e043497. https://doi.org/10.1136/bmjopen-2020-043497.
[34] Nikolentzos G, Vazirgiannis M, Xypolopoulos C, Lingman M, Brandt EG. Synthetic electronic health records generated with variational graph autoencoders. Npj Digit Med 2023;6:1–12. https://doi.org/10.1038/s41746-023-00822-x.
[35] CDISC. Synthetic SDTM sample dataset n.d. https://github.com/lhncbc/r-snippets-bmi/tree/master/cdisc/inst/extdata/cdisc01/csv (accessed July 19, 2023).
[36] Lee GH, Shin S-Y. Federated Learning on Clinical Benchmark Data: Performance Assessment. J Med Internet Res 2020;22:e20891. https://doi.org/10.2196/20891.
[37] Azizi Z, Lindner S, Shiba Y, Raparelli V, Norris CM, Kublickiene K, et al. A comparison of synthetic data generation and federated analysis for enabling international evaluations of cardiovascular health. Sci Rep 2023;13:11540. https://doi.org/10.1038/s41598-023-38457-3.