Adhikari, L., Lindstrom, O. M., Markham, J., Missaoui, A.M. (2018) Dissecting Key Adaptation Traits in the Polyploid Perennial Medicago sativa Using GBS-SNP Mapping. Front. Plant. Sci. 9, 934. doi: 10.3389/fpls.2018.0093
Alsaleh, A., Baloch, F. S., Derya, M. et al. (2015) Genetic Linkage Map of Anatolian Durum Wheat Derived from a Cross of Kunduru-1149 × Cham1. Plant Mol. Bio. Rep. 33: 209-220. doi: 10.1007/s11105-014-0749-6
Baird, N. A., Etter, P. D., Atwood, T.S. et al. (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE 3: e3376. doi: 10.1371/journal.pone.0003376
Cai, N. H., Xu, Y. L., Wang, D. W., Chen, S., Li, G.Q. (2017) Identification and characterization of microsatellite markers in pinus kesiya var. langbianensis (pinaceae). Appli. Plant. Sci. 5: 1600126. doi: 10.3732/apps.1600126
Cao, X. L. & Zhang, Y. (2017) Analysis on the China certified emission reductions, economic value and its sensitivity of Pinus kesiya var. langbianensis afforestation project in Yunnan province. Ecol. Environ. Sci. 26, 234-242. doi: 10.16258/j.cnki.1674-5906.2017.02.008
Casasoli, M., Mattioni, C., Cherubini, M., Villani, F. (2001) A genetic linkage map of European chestnut (Castanea sativa Mill.) based on RAPD, ISSR and isozyme markers. Theor. Appl. Genet. 102, 1190-1199. doi: 10.1007/s00122-001-0553-1
Chancerel, E., Lepoittevin, C., Le, Provost. G. et al. (2011) Development and implementation of a highly-multiplexed SNP array for genetic mapping in maritime pine and comparative mapping with loblolly pine. BMC Genomics 12: 368. doi: 10.1186/1471-2164-12-368
Chang, Y. Q., Ding J, Xu, Y. H., Li, D., Zhang, W. J., Li, L., Song, J. (2018) SLAF-based high-density genetic map construction and QTL mapping for major economic traits in sea urchin Strongylocentrotus intermedius. Sci. Rep. 8: 820. doi: 10.1038/s41598-017-18768-y
Chen, M. M., Feng, F., Sui, X., et al. (2010) Genetic linkage maps of Pinus koraiensis Sieb. et Zucc. based on AFLP markers. Afric. J. Biotech. 9, 5659-5664. doi: 10.1186/1471-2105-11-441
Conson, A. R. O., Taniguti, C. H., Amadeu, R. R., Andreotti, I. A. A., de Souza, L. M., et al. (2018) High-resolution genetic map and QTL analysis of growth-related traits of hevea brasiliensis cultivated under suboptimal temperature and humidity conditions. Front. Plant. Sci. 9:1255. doi: 10.3389/fpls.2018.01255
Devey, M. E., Groom, K. A., Nolan, M. F., Bell, J. C., Dudzinski, M. J., Old, K. M., Matheson, A. C., Moran, G. F. (2004) Detection and verification of quantitative trait loci for resistance to Dothistroma needle blight in Pinus radiata. Theor. Appl. Genet. 108, 1056-1063. doi: 10.1007/s00122-003-1471-1
Dong, J. X., Guo, H. J., Li, P., Zhao, Y. F., Yun, X. H. (2009) Oleoresin resources and development capacity in Yunnan. J. Northwest.For. Uni. 24,157-160. doi: 10.1007/978-1-4020-9623-5
Echt, C. S., Saha, S., Krutovsky, K. V., et al. (2011) An annotated genetic map of loblolly pine based on microsatellite and cDNA markers. BMC Genetics 12: 17. doi: 10.1186/1471-2156-12-17
Eckert, A. J., Pande, B., Ersoz, E. S., et al. (2009) High-throughput genotyping and mapping of single nucleotide polymorphisms in loblolly pine (Pinus taeda L.). Tree. Genet. Genom. 5, 225-234. doi: 10.1007/s11295-008-0183-8
Elshire R. J., Glaubitz J. C., Sun, Q. Poland, J. A., Kawamoto, K., Buckler, E. S., Mitchell, S. E. (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6: e19379. https://doi.org/10.1371/journal.pone. 0019379
El-Soda, M., Malosetti, M., Zwaan, B. J., Koornneef, M., and Aarts, G. M. (2014) Genotype × environment interaction QTL mapping in plants: lessons from Arabidopsis. Trends. Plant. Sci. 19, 390–398. doi: 10.1016/j.tplants.2014.01.001
Freeman, J. S., Potts, B. M., Shepherd, M. (2006) Parental and consensus linkage maps of Eucalyptus globulus using AFLP and microsatellite markers. Silvae. Genet. 55, 202-217. doi: 10.1134/ s1022795406010145
Gao, W., Qu, J. B., Zhang, J. X., Sonnenberg, A., Chen, Q., Zhang, Y., Huang, C. Y. (2018) A genetic linkage map of Pleurotus tuoliensis integrated with physical mapping of the de novo sequenced genome and the mating type loci. BMC Genomics 19: 18. doi: 10.1186/s12864-017-4421-z
Grattapaglia, D. & Sederoff, R. (1994) Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers. Genetics 137, 1121-1137. doi: 10.1101/gad.8.15.1853
Gulsen, O., Uzun, A., Canan, I., et al. (2010) A new citrus linkage map based on SRAP, SSR, ISSR, POGP, RGA and RAPD markers. Euphytica 173, 265-277. doi: 10.1007/s10681-010-0146-7
He, Y. X., Yuan, W. J., Dong, M. F., et al. (2017) The First Genetic Map in Sweet Osmanthus (Osmanthus fragrans Lour.) Using Specific Locus Amplified Fragment Sequencing. Front. Plant. Sci. 8: 1621. doi: 10.3389/fpls.2017.01621
Jansen, J. (2005). Construction of linkage maps in full-sib families of diploid outbreeding species by minimizing the number of recombinations in hidden inheritance vectors. Genetics 170, 2013–2025. doi: 10.1534/genetics.105.041822
Jiang, T. B., Zhou, B. R., Gao, F. L., Guo, B. Z. (2011) Genetic linkage maps of white birches (Betula platyphylla Suk. and B. pendula Roth) based on RAPD and AFLP markers. Mol. Breed. 27: 347–356. doi: 10.1007/s11032-010-9436-y
Kenis, K., and Keulemans, J. (2007) Study of tree architecture of apple (Malus × domestics Borkh.) by QTL analysis of growth traits. Mol. Breed. 19, 193-208. doi: 10.1007/s11032-006-9022-5
Li, B., Tian, L., Zhang, J. Y., Huang, L., Han, F. X., Yan, S. R., Wang, L. Z., Zheng, H. K., Sun, J. M. (2014) Construction of a high-density genetic map based on large-scale markers developed by specific length amplified fragment sequencing (SLAF-seq) and its application to QTL analysis for isoflavone content in glycine max. Bmc Genomics 15: 1086. dio: 10.1186/1471-2164-15-1086
Li, S. F., Su, J. R., Lang, X. D., Huang, X. B., Miao, Y. C., Yang, L. H. (2017) Genetic variation and early selection analysis of open-pollinated families of Pinus kesiya var. langbianensis. For. Res. 30, 929-935. doi: 10.13275/j.cnki.lykxyj.2017.06.00
Li, S. F., Su, J. R., Lang, X. D., Liu, W. D., Ou, G. L. (2018) Positive relationship between species richness and aboveground biomass across forest strata in a primary Pinus kesiya forest. Sci. Rep. 8: 2227. doi: 10.1038/s41598-018-20165-y
Li, Y., Wang, D. W., Li, Z. Q., et al. (2014) A Molecular Genetic Linkage Map of Eucommia ulmoides and Quantitative Trait Loci (QTL) Analysis for Growth Traits. Int. J. Mol. Sci. 15, 2053-2074. doi: 10.3390/ijms15022053
Liu, C. Fan, B. J., Cao, Z. M., et al. (2016) Development of a high-density genetic linkage map and identification of flowering time QTLs in adzuki bean (Vigna angularis). Sci. Rep. 6: 39523. doi: 10.1038/srep39523.
Liu, H. L., Cao, F.L., Yin, T. M., Chen, Y. N. (2017) A Highly dense genetic map for Ginkgo biloba constructed Using sequence-based markers. Front. Plant. Sci. 8: 1041. doi: 10.3389/ fpls.2017.01041
Liu, J., Huang, S. M., Sun, M. Y., Liu, S. Y., Liu, Y. M., Wang, W. X., Zhang, X. R., Wang, H. Z., Hua, W. (2012) An improved allele-specific PCR primer design method for SNP marker analysis and its application. Plant Methods 8: 34. doi: 10.1186/1746-4811-8-34
Liu, Z. H., Bao, D. G., Liu, D. L., et al. (2016) Construction of a Genetic Linkage Map and QTL Analysis of Fruit-related Traits in an F1 Red Fuji × Hongrou Apple Hybrid. Open. Life. Sci. 11, 487-497. doi: 10.1515/biol-2016-0063
Lowry, D. B., Taylor, S., Bonnette, J., Aspinwall, M. J., Asmus, A., Keitt, T. H., Tobias, C. M., Juenger, T. E. (2015) QTLs for biomass and developmental traits in switchgrass (Panicum virgatum). BioEnergy. Re.s 8, 1856-1867. doi: 10.1007/s12155-015-9629-7
Luo, C., Shu, B., Yao, Q., Wu, H., Xu, W. and Wang, S. (2016) Construction of a high-density genetic map based on large-scale marker development in mango using Specific-Locus Amplified Fragment Sequencing (SLAF-seq). Front. Plant Sci. 7: 1310. doi: 10.3389/fpls.2016.0131
Mortaza, K., Salih, K., Ziya, M. E., Nergiz, C. (2018) In silico polymorphic novel SSR marker development and the first SSR-based genetic linkage map in pistachio. Tree. Genet. Genom. 14: 45. doi: 10.1007/s10681-015-1394-3
Neves, L. G., Davis, J. M., Barbazuk, W. B., et al. (2014) A high-density gene map of loblolly pine (Pinus taeda L.) based on exome sequence capture genotyping. G3. 4, 29-37. doi: 10.1534/g3.113.008714
Ou, G. L., Wang, J. F., Xu, H., Chen, K. Y., Zheng, H. M,. Zhang, B., Sun, X. L., Xu, T.T., Xiao, Y. F. (2016) Incorporating topographic factors in nonlinear mixed-effects models for aboveground biomass of natural Simao pine in Yunnan. China. J.For. Res. 27, 119–131. doi: 10.1007/s11676- 015-0143-8
Rönnberg-Wästljung, A. C., Glynn, C., Weih, M. (2005) QTL analysis of drought tolerance and growth for a Salix dasyclados × Salix viminalis hybrid in contrasting water regimes. Theor. Appl. Genet. 110, 537-549. doi: 10.1007/s00122-004-1866-7
Sen, S. & Churchill, G. A. (2001) A statistical framework for quantitative trait mapping. Genetics 159, 371-87. doi: 10.1089/10906570152742353
Shang, J. L., Li, N., Li, N. N., Xu, Y. Y., Ma, S. W., Wang, J. M. (2016) Construction of a high-density genetic map for watermelon (Citrullus lanatus L.) based on large-scale SNP discovery by specific length amplified fragment sequencing (SLAF-seq). Sci. Hortic 203, 38-46. doi: 10.1016/ j.scienta.2016.03.007
Sun, X. W., Liu, D. Y., Zhang, X. F., Li, W. B., Liu, H., Hong, W. G., et al. (2013) SLAF-seq: an efficient method of large-scale de novo SNP discovery and genotyping using high-throughput sequencing. PLoS ONE 8: e58700. doi: 10.1371/journal.pone.0058700
Troggio, M., Malacarne, G., Coppola, G., Segala, C., Cartwright, D. A., Pindo, M., et al. (2007) A dense single nucleotide polymorphism-based genetic linkage map of grapevine (Vitis vinifera L.) anchoring Pinot Noir bacterial artificial chromosome contigs. Genetics 176, 2637-2650. doi: 1534/genetics. 106.067462
Ukrainetz, N. K., Ritland, K., Mansfield, S. D. (2008) An AFLP linkage map for Douglas-fir based upon multiple full-sib families. Tree. Genet. Genom. 4, 181–191. doi: 10.1007/s11295-007-0099-8
Van Ooijen, J. W. (2009) Map QTL 6: software for the mapping of quantitative trait loci in experimental populations of diploid species. Wageningen, Netherlands. https://www.kyazma.nl/ index.php/mc.Map QTL.
Van, O. H., Stam, P., Visser, R. G., Van Eck, H. J. (2005) SMOOTH: a statistical method for successful removal of genotyping errors from high-density genetic linkage data. Theor. Appl. Genet. 112, 187-194. doi: 10.1007/s00122-005-0124-y
Van, O. J. (2011) Multipoint maximum likelihood mapping in a full-sib family of an outbreeding species. Genet. Res. 93, 343-349. doi: 10.1017/S0016672311000279
Vinod K. K. (2011) Kosambi and the genetic mapping function. Resonance 16, 540-550. doi: 10.1007/s12045-011-0060-x
Wang, D. W., Li, Y., Li, L., Wei, Y. C., Li, Z. Q. (2014) The first genetic linkage map of Eucommia ulmoides. J. Genet. 93, 13-20. doi: 10.1007/s12041-014-0322-y
Wang, D. W., Shen, B. Q., Gong, H. D. (2019) Genetic diversity of Simao pine in China revealed by SRAP markers. Peer. J. 7: e6529. doi: 10.7717/peerj.6529
Wang, H. F.,Lencinas, M. V.,Friedman, C. R.,Zhu, Z. X.,Qiu, J. X. (2012) Understory plant diversity assessment of Szemao pine (Pinus kesiya var. langbianensis) plantations in Yunnan, China. Collectanea. Botanica. 31, 51-65. doi: 10.1371/journal.pone.0135946
Wang, L., Li, X. G., Wang, L., Xue, H. B., Wu, J., Yin, H., Zhang, S. L. (2017) Construction of a high-density genetic linkage map in pear (Pyrus communis × Pyrus pyrifolia nakai) using SSRs and SNPs developed by SLAF-seq. Sci. Hortic. 218, 198-204. doi: 10.1016/j.scienta.2017.02.015
Wang, Y., Yuan, X. L., Hua, M., Li, J., Wang, J. (2018) Transcriptome and gene expression analysis revealed mechanisms for producing high oleoresin yields from Simao pine (Pinus kesiya var. langbianensis). Plant. Omics. J. 11, 42-49. doi: 10.21475/poj.11.01.18.pne1085
Wen, Q. Z., Zhao, Y. F., Chen, X. M., Yang, Z. X., Ai, J. L., Yang, X. S. (2010) Dynamic study on the values for ecological service function of Pinus kesiya forest in China. For. Res. 23, 671-677.doi: 10.3724/sp.j.1238.2010.00474
West, M. A., Van, L. H., Kozik, A., et al. (2006). High-density haplotyping with microarray-based expression and single feature polymorphism markers in Arabidopsis. Genome. Res. 16, 787-795. doi: 10.1101/gr.5011206
Westbrook, J. W., Chhatre, V. E., Wu, L. S, et al. (2015) A Consensus Genetic Map for Pinus taeda and Pinus elliottii and Extent of Linkage Disequilibrium in Two Genotype-Phenotype Discovery Populations of Pinus taeda. G3 5: 1685. doi: 0.1534/g3.115.019588
Wu, J., Li, L. T., Li, M., Khan, A., Li, X. G., Chen, H., Yin, H., Zhang, S. L. (2014) High-density genetic linkage map construction and identification of fruit-related QTLs in pear using SNP and SSR markers. J. Experi. Bot. 65, 5771-5781.doi: 10.1093/jxb/eru311
Wu, J., Zhao, Q., Zhang, L., et al. (2018) QTL Mapping of fiber-related traits based on a high-density genetic map in flax (Linum usitatissimum L.). Fron.t Plant. Sci. 9: 885. doi: 10.3389/fpls.2018.0088
Wu, L. Y. & Zhao, W. S. (1999) Study on Chromosome' s Karyotypes of Different Populations of Pinus kesiya var. langbianensis (A. Chev.) Gaussen. Yunnan. For. Sci. Tech. 87, 32-35. doi: 10.16473/j.cnki.xblykx1972.1999.02.006
Xia, Z. Q., Zhang, S. K., Wen, M. F., Lu, C., Sun, Y. F., Zou, M. L., Wang, W. Q. (2018) Construction of an ultrahigh-density genetic linkage map for Jatropha curcas L. and identification of QTL for fruit yield. Biotech. Biofuels. 11: 3. doi: 10.1186/s13068-017-1004-9
Xu, M. Y., Deng, G. X., Ling, W. G. (2012) Exploration on the utilization of Pinus khasya seeds. Seed 31, 95-101. doi: 10.16590/j.cnki.1001-4705.2012.08.079
Yang, H. X., Liu, T. Y., Liu, C. X., Zhao, F. C., Huang, S. W. (2013) QTL detection for growth traits in Pinus elliottii var. elliottii and P. caribaea var. hondurensis. For. Sci. Practice. 15, 196-205. doi: 10.1007/ s11632-013-0306-7
Zhang, J., Zhang, Q. X., Cheng, T. R., Yang, W. R., Pan, H. T., Zhong, J. J., Huang, L., Liu, E. Z. (2015) High-density genetic map construction and identification of a locus controlling weeping trait in an ornamental woody plant (Prunus mume Sieb. et Zucc). DNA. Res. 22, 183-191. doi: 10.1093/dnares/dsv003
Zhang, Y. X., Wang, L. H., Xin, H. G., Li, D. H., Ma, C. X., Ding, X., Hong, W. G., Zhang, X. R. (2013) Construction of a high-density genetic map for sesame based on large scale marker development by specific length amplified fragment (SLAF) sequencing. BMC. Plant. Biol. 13:141. doi: 10.1186/ 1471-2229-13-141
Zhang, Z., Shang, H. H., Shi, Y. Z., Huang, L., Li, J. W., Ge, Q., Gong, G.W., et al. (2016) Construction of a high-density genetic map by specific locus amplified fragment sequencing (SLAF-seq) and its application to Quantitative Trait Loci (QTL) analysis for boll weight in upland cotton (Gossypium hirsutum.). BMC. Plant. Biol. 1: 79. doi: 10.1186/s12870-016-0741-4
Zhao, X. X., Huang, K., Zhang, X. Q., Wang, J. P., Yan, D. F., Li, J., Tang, L., Li, X. L., Shi, T. W. (2016) Construction of high-density genetic linkage map and identification of flowering-time QTLs in orchardgrass using SSRs and SLAF-seq. Sci. Rep. 6: 29345. doi: 10.1038/srep29345
Zhao, Z. Q., Gu, H. H., Sheng, X. G., Yu, H. F., Wang, J. S., Huang, L., Wang, D. (2016) Genome-wide single-nucleotide polymorphisms discovery and high-density genetic map construction in cauli flower using Specific-Locus Amplified Fragment Sequencing. Front. Plan.t Sci. 7: 334. doi: 10.3389/fpls.2016.00334
Zhu, Y. F., Chen, S. Y., Hao, J. B., Wu, T. (2017) Genetic analysis of superior clones and identification of specific marker of elite clones of Pinus kesiya. Agri. Sci.Tech. 18, 2524-2527.doi: 10.16175/j.cnki. 1009-4229.2017.12.073
Zhu, Y. F., Chen, S. Y., Hao, J. B., Wu, T. (2016) Genetic analysis of superior clones and specific marker of elite clones of Pinus kesiya var. langbianensis. J. West. China. For. Sci. 45, 141-146. doi: 10.16473/ j.cnki.xblykx1972.2016.04.024
Zhu, Y. F., Yin, Y. F., Yang, K. Q., et al. (2015) Construction of a high-density genetic map using specific length amplified fragment markers and identification of a quantitative trait locus for anthracnose resistance in walnut (Juglans regia L.). Bmc Genomics 16: 614. doi: 10.1186/ s12864-015-1822-8