1. Anderson, R. H., et al. Normal and abnormal development of the intrapericardial arterial trunks in humans and mice. Cardiovasc. Res. 95, 108-115 (2012).
2. Anderson, R. H., Webb, S., Brown, N. A., Lamers, W. & Moorman, A. Development of the heart: (3) formation of the ventricular outflow tracts, arterial valves, and intrapericardial arterial trunks. Heart 89, 1110-1118 (2003).
3. Gittenberger-de Groot, A. C., Bartelings, M. M., DeRuiter, M. C. & Poelmann, R. E. Basics of cardiac development for the understanding of congenital heart malformations. Pediatr. Res. 57, 169-176 (2005).
4. Henderson, D. J., Eley, L. & Chaudhry. B. New concepts in the development and malformation of the arterial valves. J. Cardiovasc. Dev. Dis. 7, 38 (2020).
5. Kirby, M. L. & Waldo, K. Molecular embryogenesis of the heart. Pediatr. Devel. Pathol. 5, 516-543 (2002).
6. Spicer, D. E., Bridgeman, J. M., Brown, N. A., Mohun, T. J. & Anderson, R. H. The anatomy and development of the cardiac valves. Cardiol. Young 24, 1008-1022 (2014).
7. Waldo, K. L., Lo, C. W. & Kirby, M. L. Connexin 43 expression reflects neural crest patterns during cardiovascular development. Dev. Biol. 208, 307-323 (1999).
8. Soto-Navarrete, M. T., López-Unzu, M. A., Durán, A. C. & Fernández, B. Embryonic development of bicuspid aortic valves. Prog. Cardiovasc. Dis. 63, 407-418 (2020).
9. Peterson, J. C. et al. Bicuspid aortic valve formation: Nos3 mutation leads to abnormal lineage patterning of neural crest cells and the second heart field. Dis. Mod. Mech. 11, dmm034637 (2018).
10. Hinton, R. B. & Yutzey, K, E, Heart valve structure and function in development and disease. Annu. Rev. Physiol. 73, 29-46 (2011).
11. Hurlé, J. M., Colvee, E. & Blanco, A. M. Development of mouse semilunar valves. Anat. Embryol. 160, 83-91 (1980).
12. Sans-Coma, V. et al. Fusion of valve cushions as a key factor in the formation of congenital bicuspid aortic valves in Syrian hamsters. Anat. Rec. 244, 490–498 (1996).
13. Fedak, P. W. M. et al. Clinical and pathophysiological implications of a bicuspid aortic valve. Circulation 106, 900–4 (2002).
14. Masri, A., Svensson, L. G., Griffin, B. P. & Desai, M. Y. Contemporary natural history of bicuspid aortic valve disease: a systematic review. Heart 103, 1323-1330 (2017).
15. Roberts, W. C. The congenitally bicuspid aortic valve. A study of 85 autopsy cases. Am. J. Cardiol. 26, 72-83 (1970).
16. Michelena, H. I. et al. International consensus statement on nomenclature and classification of the congenital bicuspid aortic valve and its aortopathy, for clinical, surgical, interventional and research purposes. Eur. J. Cardiothorac. Surg. 60, 448–476 (2021).
17. Basso, C. et a An echocardiographic survey of primary school children for bicuspid aortic valve. Am. J. Cardiol. 93, 661-663 (2004).
18. Russo CF, et al. Is aortic wall degeneration related to bicuspid aortic valve anatomy in patients with valvular disease? J. Thorac. Cardiovasc. Surg. 136, 937-942 (2008).
19. Fernández, B. et al. Bicuspid aortic valves with different spatial orientations of the leaflets are distinct etiological entities. J. Am. Coll. Cardiol. 54, 2312-2318 (2009).
20. Waldo, K. L., Miyagawa-Tomita, S., Kumiski, D. & Kirby, M. L.Cardiac neural crest cells provide new insight into septation of the outflow tract: aortic sac to ventricular septal closure. Dev. Biol. 196, 129-144 (1998).
21. Fernández, B. et al. Bicuspid aortic valve in 2 model species and review of the literature. Vet. Pathol. 57, 321-331 (2020).
22. Sans-Coma, V. et al. Evidence for a quantitative genetic influence on the formation of aortic valves with two leaflets in the Syrian hamster. Cardiol. Young 3, 132–140 (1993).
23. Sans-Coma, V. et al. Genetically alike Syrian hamsters display both bifoliate and trifoliate aortic valves: Aortic valves in isogenic hamsters. J. Anat. 220, 92–101 (2012).
24. Soto-Navarrete, M. T. et al. Experimental evidence of the genetic hypothesis on the etiology of bicuspid aortic valve aortopathy in the hamster model. Front. Cardiovasc. Med. 9, 928362; 10.3389/fcvm.2022.928362 (2022).
25. Cripe, L., Andelfinger, G., Martin, L. J., Shooner, K. & Benson, D. W. Bicuspid aortic valve is heritable. J. Am. Coll. Cardiol. 44, 138–43 (2004).
26. Ray, H. J. & Niswander, L. Mechanisms of tissue fusion during development. Development 139, 1701-1711 (2012).
27. Houyel, L. & Meilhac, S. M. Heart development and congenital structural heart defects. Annu. Rev. Genom. Hum. G. 22, 257-284 (2021).
28. Punovuori, K., Malaguti, M. & Lowell, S. Cadherins in early neural development. Cell. Mol. Life. Sci. 78, 4435-4450 (2021).29. Martınez-Alvarez, C. et al. Medial edge epithelial cell fate during palatal fusion. Dev. Biol. 220, 343-357 (2000).
30. Kovacic, J. C., Mercader, N., Torres, M., Boehm, M., Fuster, V. Epithelial-to-mesenchymal and endothelial-to-mesenchymal transition: from cardiovascular development to disease. Circulation 125, 1795-1808 (2012).
31. Dickman, E. D., Rogers, R. & Conway, S. J. Abnormal skeletogenesis occurs coincident with increased apoptosis in the Splotch (Sp2H) mutant: putative roles for Pax3 and PDGFRα in rib patterning. Anat. Rec. 255, 353-361 (1999).
32. Poelmann, R. E., Mikawa, T. & Gittenberger-de Groot, A. C. Neural crest cells in outflow tract septation of the embryonic chicken heart: differentiation and apoptosis. Dev. Dyn. 212, 373-384 (1998).
33. Kurn, H. & Daly, D. T. Histology, Epithelial Cell. In: StatPearls [Internet]. StatPearls Publishing, Treasure Island (FL) https://www.ncbi.nlm.nih.gov/books/NBK559063/ (2023).
34. Nakaya, Y. & Sheng, G. Epithelial to mesenchymal transition during gastrulation: an embryological view. Dev. Growth. Differ. 50, 755-766 (2008).
35. Hay, E. D. Organization and fine structure of epithelium and mesenchyme in the developing chick embryo. In Epithelial-Mesenchymal Interactions; 18th Hahnemann Symposium, 1968. Williams & Wilkins (1968).
36. Abdulla, T., Luna-Zurita, L., De La Pompa, J. L., Schleich, J. M. & Summers, R. Epithelial to mesenchymal transition—The roles of cell morphology, labile adhesion and junctional coupling. Comput. Meth. Prog. Bio. 111, 435-446 (2013).
37. Yang, J. et al. Guidelines and definitions for research on epithelial–mesenchymal transition. Nat. Rev. Mol. Cell. Biol. 21, 341–352 (2020).
38. Duband, J. L. Diversity in the molecular and cellular strategies of epithelium-to-mesenchyme transitions: Insights from the neural crest. Cell Adhes. Migr. 4, 458-482 (2010).
39. Acloque, H., Adams, M. S., Fishwick, K., Bronner-Fraser, M. & Nieto, M. A. Epithelial-mesenchymal transitions: the importance of changing cell state in development and disease. J. Clin. Invest. 119, 1438-49 (2009).
40. Schiffmacher, A. T., Adomako-Ankomah, A., Xie, V. & Taneyhill, L. A. Cadherin-6B proteolytic N-terminal fragments promote chick cranial neural crest cell delamination by regulating extracellular matrix degradation. Dev. Biol. 444, S237-S251 (2018).
41. Freiholtz, D. et al. Bicuspid aortic valve aortopathy is characterized by embryonic epithelial to mesenchymal transition and endothelial instability. J. Mol. Med. 101, 801-811 (2023).
42. Jain, R. et al. Cardiac neural crest orchestrates remodeling and functional maturation of mouse semilunar valves. J. Clin. Invest. 121, 422–430 (2011).
43. Plein, A., Fantin, A. & Ruhrberg, C. Neural crest cells in cardiovascular development. Curr. Top. Dev. Biol. 111, 183–200 (2015).
44. MacGrogan, D. et al. Sequential ligand-dependent notch signaling activation regulates valve primordium formation and morphogenesis. Circ. Res. 118, 1480–1497 (2016).
45. Torregrosa-Carrión, R. et al. NOTCH Activation Promotes Valve Formation by Regulating the Endocardial Secretome. Mol. Cell. Proteomics. 18, 1782-1795 (2019).
46. High, F. A. et al. Murine Jagged1/Notch signaling in the second heart field orchestrates Fgf8 expression and tissue-tissue interactions during outflow tract development. J. Clin. Invest. 119, 1986–1996 (2009).