1. Rowland I, Gibson G, Heinken A, Scott K, Swann J, Thiele I, et al. Gut microbiota functions: metabolism of nutrients and other food components. Eur J Nutr. 2018;57:1–24.
2. Ubeda C, Djukovic A, Isaac S. Roles of the intestinal microbiota in pathogen protection. Clin Transl Immunology. 2017;6:e128.
3. Flint HJ, Scott KP, Duncan SH, Louis P, Forano E. Microbial degradation of complex carbohydrates in the gut. Gut Microbes. 2012;3:289–306.
4. Dearing MD, Kohl KD. Beyond Fermentation: Other Important Services Provided to Endothermic Herbivores by their Gut Microbiota. Integr Comp Biol. Oxford Academic; 2017;57:723–31.
5. Stevens CE, Hume ID. Contributions of Microbes in Vertebrate Gastrointestinal Tract to Production and Conservation of Nutrients. Physiological Reviews. American Physiological Society; 1998;78:393–427.
6. Barboza PS, Hume ID. Hindgut fermentation in the wombats: two marsupial grazers. J Comp Physiol B. 1992;162:561–6.
7. Donaldson GP, Lee SM, Mazmanian SK. Gut biogeography of the bacterial microbiota. Nat Rev Micro [Internet]. 2015 [cited 2015 Oct 28];advance online publication. Available from: http://www.nature.com.helicon.vuw.ac.nz/nrmicro/journal/vaop/ncurrent/abs/nrmicro3552.html
8. Costa MC, Silva G, Ramos RV, Staempfli HR, Arroyo LG, Kim P, et al. Characterization and comparison of the bacterial microbiota in different gastrointestinal tract compartments in horses. The Veterinary Journal. 2015;205:74–80.
9. Ericsson AC, Johnson PJ, Lopes MA, Perry SC, Lanter HR. A Microbiological Map of the Healthy Equine Gastrointestinal Tract. PLOS ONE. Public Library of Science; 2016;11:e0166523.
10. Kelly J, Daly K, Moran AW, Ryan S, Bravo D, Shirazi‐Beechey SP. Composition and diversity of mucosa-associated microbiota along the entire length of the pig gastrointestinal tract; dietary influences. Environmental Microbiology. 2017;19:1425–38.
11. Crespo-Piazuelo D, Estellé J, Revilla M, Criado-Mesas L, Ramayo-Caldas Y, Óvilo C, et al. Characterization of bacterial microbiota compositions along the intestinal tract in pigs and their interactions and functions. Scientific Reports. Nature Publishing Group; 2018;8:12727.
12. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, et al. Diversity of the Human Intestinal Microbial Flora. Science. American Association for the Advancement of Science; 2005;308:1635–8.
13. Flynn KJ, Ruffin MT, Turgeon DK, Schloss PD. Spatial Variation of the Native Colon Microbiota in Healthy Adults. Cancer Prev Res. American Association for Cancer Research; 2018;11:393–402.
14. Vasapolli R, Schütte K, Schulz C, Vital M, Schomburg D, Pieper DH, et al. Analysis of Transcriptionally Active Bacteria Throughout the Gastrointestinal Tract of Healthy Individuals. Gastroenterology. Elsevier; 2019;157:1081-1092.e3.
15. Gu S, Chen D, Zhang J-N, Lv X, Wang K, Duan L-P, et al. Bacterial Community Mapping of the Mouse Gastrointestinal Tract. PLOS ONE. Public Library of Science; 2013;8:e74957.
16. Pang W, Vogensen FK, Nielsen DS, Hansen AK. Faecal and caecal microbiota profiles of mice do not cluster in the same way. Lab Anim. SAGE Publications; 2012;46:231–6.
17. Wells R. Vombatidae. Fauna of Australia Volume 1B Mammalia. Australian Government Publishing Service, Canberra, Australian Capital Territory, Australia; 1989. p. 755–68.
18. Camp A, Croxford AE, Ford CS, Baumann U, Clements PR, Hiendleder S, et al. Dual-locus DNA metabarcoding reveals southern hairy-nosed wombats (Lasiorhinus latifrons Owen) have a summer diet dominated by toxic invasive plants. PLOS ONE. Public Library of Science; 2020;15:e0229390.
19. Mitchell KJ, Pratt RC, Watson LN, Gibb GC, Llamas B, Kasper M, et al. Molecular phylogeny, biogeography, and habitat preference evolution of marsupials. Mol Biol Evol. 2014;31:2322–30.
20. Barboza PS, Hume ID. Digestive tract morphology and digestion in the wombats (Marsupialia: Vombatidae). J Comp Physiol B. 1992;162:552–60.
21. Hume ID. Marsupial nutrition. New York: Cambridge University Press; 1999.
22. Shiffman ME, Soo RM, Dennis PG, Morrison M, Tyson GW, Hugenholtz P. Gene and genome-centric analyses of koala and wombat fecal microbiomes point to metabolic specialization for Eucalyptus digestion. PeerJ. 2017;5:e4075.
23. Eisenhofer R, Helgen KM, Taggart D. Signatures of landscape and captivity in the gut microbiota of Southern Hairy-nosed Wombats (Lasiorhinus latifrons). Animal Microbiome. 2021;3:4.
24. Weiss S, Taggart D, Smith I, Helgen KM, Eisenhofer R. Host reproductive cycle influences the pouch microbiota of wild southern hairy-nosed wombats (Lasiorhinus latifrons). Animal Microbiome. 2021;3:13.
25. Song SJ, Amir A, Metcalf JL, Amato KR, Xu ZZ, Humphrey G, et al. Preservation Methods Differ in Fecal Microbiome Stability, Affecting Suitability for Field Studies. mSystems [Internet]. 2016 [cited 2018 May 24];1. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5069758/
26. Lauber CL, Zhou N, Gordon JI, Knight R, Fierer N. Effect of storage conditions on the assessment of bacterial community structure in soil and human-associated samples. FEMS Microbiology Letters. 2010;307:80–6.
27. Gorzelak MA, Gill SK, Tasnim N, Ahmadi-Vand Z, Jay M, Gibson DL. Methods for Improving Human Gut Microbiome Data by Reducing Variability through Sample Processing and Storage of Stool. PLoS One. 2015;10:e0134802.
28. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. PNAS. 2011;108:4516–22.
29. Marotz C, Sharma A, Humphrey G, Gottel N, Daum C, Gilbert JA, et al. Triplicate PCR reactions for 16S rRNA gene amplicon sequencing are unnecessary. BioTechniques [Internet]. 2019 [cited 2019 May 28]; Available from: https://www.future-science.com/doi/full/10.2144/btn-2018-0192
30. Thompson LR, Sanders JG, McDonald D, Amir A, Ladau J, Locey KJ, et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature. 2017;551:457–63.
31. Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology. Nature Publishing Group; 2019;37:852–7.
32. R Core Team. R: A Language and Environment for Statistical Computing [Internet]. R Foundation for Statistical Computing; 2020. Available from: https://www.R-project.org
33. Amir A, McDonald D, Navas-Molina JA, Kopylova E, Morton JT, Xu ZZ, et al. Deblur Rapidly Resolves Single-Nucleotide Community Sequence Patterns. mSystems. 2017;2:e00191-16.
34. Bokulich NA, Kaehler BD, Rideout JR, Dillon M, Bolyen E, Knight R, et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome. 2018;6:90.
35. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.
36. Janssen S, McDonald D, Gonzalez A, Navas-Molina JA, Jiang L, Xu ZZ, et al. Phylogenetic Placement of Exact Amplicon Sequences Improves Associations with Clinical Information. mSystems. 2018;3:e00021-18.
37. McMurdie PJ, Holmes S. phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLOS ONE. Public Library of Science; 2013;8:e61217.
38. Lahti L, Shetty S, et. al. Tools for microbiome analysis in R. Microbiome package version 1.13.9 [Internet]. Bioconductor 2017; Available from: http://microbiome.github.com/microbiome
39. Lozupone C, Knight R. UniFrac: a New Phylogenetic Method for Comparing Microbial Communities. Applied and Environmental Microbiology. 2005;71:8228–35.
40. Wickham H. ggplot2: Elegant Graphics for Data Analysis [Internet]. Springer-Verlag New York; 2016. Available from: https://ggplot2.tidyverse.org
41. Kaul A, Mandal S, Davidov O, Peddada SD. Analysis of Microbiome Data in the Presence of Excess Zeros. Front Microbiol [Internet]. Frontiers; 2017 [cited 2021 May 5];8. Available from: https://www.frontiersin.org/articles/10.3389/fmicb.2017.02114/full
42. Filippo CD, Cavalieri D, Paola MD, Ramazzotti M, Poullet JB, Massart S, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. PNAS. National Academy of Sciences; 2010;107:14691–6.
43. Kovatcheva-Datchary P, Nilsson A, Akrami R, Lee YS, De Vadder F, Arora T, et al. Dietary Fiber-Induced Improvement in Glucose Metabolism Is Associated with Increased Abundance of Prevotella. Cell Metabolism. 2015;22:971–82.
44. Kaoutari AE, Armougom F, Gordon JI, Raoult D, Henrissat B. The abundance and variety of carbohydrate-active enzymes in the human gut microbiota. Nature Reviews Microbiology. Nature Publishing Group; 2013;11:497–504.
45. Neumann AP, McCormick CA, Suen G. Fibrobacter communities in the gastrointestinal tracts of diverse hindgut-fermenting herbivores are distinct from those of the rumen. Environ Microbiol. 2017;19:3768–83.
46. Sun D-L, Jiang X, Wu QL, Zhou N-Y. Intragenomic Heterogeneity of 16S rRNA Genes Causes Overestimation of Prokaryotic Diversity. Appl Environ Microbiol. American Society for Microbiology; 2013;79:5962–9.