Alexander, CMO’D, Barber DJ, Hutchison R (1989) The microstructure of Semarkona and Bishunpur. Geochim Cosmochim Acta 53: 3045-3057. https://doi.org/10.1016/0016-7037(89)90180-4
Alexander CMO’D, Russell SS, Arden JW, Ash RD, Grady MM, Pillinger CT (1998) The origin of chondritic macromolecular organic matter: A carbon and nitrogen isotope study. Meteorit Planet Sci 333: 603-622. https://doi.org/10.1111/j.1945-5100.1998.tb01667.x
Alexander CMO’D, Fogel M, Yabuta H, Cody GD (2007) The origin and evolution of chondrites recorded in the elemental and isotopic compositions of their macromolecular organic matter. Geochim Cosmochim Acta 71: 4380–4403. https://doi.org/10.1016/j.gca.2007.06.052
Alexander CMO’D, Newsome SD, Fogel ML, Nittler LR, Busemann H, Cody GD (2010) Deuterium enrichments in chondritic macromolecular material-Implications for the origin and evolution of organics, water and asteroids. Geochim Cosmochim Acta 74: 4417-4437. https://doi.org/10.1016/j.gca.2010.05.005
Alexander CMOD, Bowden R, Fogel ML (2012) The provenances of asteroids, and their contributions to the volatile inventories of the terrestrial planets. Science 337: 721-726. https://doi.org/10.1126/science.1223474
Alexander CMO’D (2017) The origin of inner Solar System water. Phylos Trans R Soc B-Biol Science A 375: 20150384. http://dx.doi.org/10.1098/rsta.2015.0384
Bischoff A (1998) Aqueous alteration of carbonaceous chondrites: Evidence for preaccretionary alteration-A review. Meteorit Planet Sci 33: 1113-1122. https://doi.org/10.1111/j.1945-5100.1998.tb01716.x
Bisschop SE, Jørgensen JK, Bourke TL, Bottinelli S, van Dishoeck EF (2008) An interferometric study of the low-mass protostar IRAS 16293-2422: small scale organic chemistry. Astron Astrophys 488: 959-968. https://doi.org/10.1051/0004-6361:200809673
Brearley AJ (1990) Carbon-rich aggregates in type 3 ordinary chondrites: Characterization, origins, and thermal history. Geochim Cosmochim Acta 54: 831-850. https://doi.org/10.1016/0016-7037(90)90377-W
Brearley AJ (2006) The action of water. In: Lauretta DS, McSween Jr HY (ed) Meteorites and the Early Solar System II. Tucson: Univ. Arizona Press, pp. 587-624.
Bunch TE, Chang S (1980) Carbonaceous chondrites-II. Carbonaceous chondrite phyllosilicates and light element geochemistry as indicators of parent body processes and surface conditions. Geochim Cosmochim Acta 44: 1543-1577. https://doi.org/10.1016/0016-7037(80)90118-0
Buseck PR, Hua X (1993) Matrices of carbonaceous chondrite meteorites. Ann Rev Earth Plant Sci 21: 255-305. https://doi.org/10.1146/annurev.ea.21.050193.001351
Cecilia, C (2002) Millimeter and infrared observations of deuterated molecules. Planet Space Sci 50: 1267-1273. https://doi.org/10.1016/S0032-0633(02)00093-4
Dobrica E, Brearley AJ (2020) Amorphous silicates in the matrix of Semarkona: The first evidence for the localized preservation of pristine matrix materials in the most unequilibrated ordinary chondrites. Meteorit Planet Sci 55: 649-668. https://doi.org/10.1111/maps.13458
Favre C, Fedele D, Semenov D, Parfenov S, Codella C, Ceccarelli C, Bergin EA, Chapillon E, Testi L, Hersant F (2018) First detection of the simplest organic acid in a protoplanetary disk. Astrophys J 862: L2-9. https://doi.org/10.3847/2041-8213/aad046
Herbst E, van Dishoeck EF (2009) Complex organic interstellar molecules. Ann Rev Astron Astrophys 47, 427-480. https://doi.org/10.1146/annurev-astro-082708-101654
Huss GR, Rubin, EA, Grossman JN (2006) Thermal metamorphism in chondrites. In: Lauretta DS, McSween Jr HY (ed) Meteorites and the Early Solar System II. Tucson: Univ. Arizona Press, pp. 567-586.
Hutchison R, Alexander CMO’D, Barber DJ (1987) The Semarkona meteorite: First recorded occurrence of smectite in an ordinary chondrite, and its implications. Geochim Cosmochim Acta 51, 1875-1882. https://doi.org/10.1016/0016-7037(87)90178-5
Iwakami Y, Takazono M, Tsuchiya T (1968) Thermal Decomposition of Hexamethylene Tetramine. Bull Chem Soc Jpn 41: 813-817. https://doi.org/10.1246/bcsj.41.813
Jacquet E, Robert F (2013) Water transport in protoplanetary disks and the hydrogen isotopic composition of Chondrites. Icurus 2: 722-732. https://doi.org/10.1016/j.icarus.2013.01.022
Jerry Shiao YS, Looney LW, Remijan AJ, Snyder LE, Friedel DN (2010) First acetic acid survey with CARMA in hot molecular cores. Astrophys J 716: 286. https://doi.org/10.1088/0004-637X/716/1/286
Jørgensen JK, Favre C, Bisschop SE, Bourke TL, van Dishoeck EF, Schmalzl M (2012) Detection of the simplest sugar, glycolaldehyde, in a solar-type protostar with ALMA. Astrophys J Lett 757: L4. https://doi.org/10.1088/2041-8205/757/1/L4
Kebukawa Y, Nakashima S, Zolensky ME (2010) Kinetics of organic matter degradation in the Murchison meteorite for the evaluation of parent-body temperature history. Meteorit Planet Sci 45: 99-113. https://doi.org/10.1111/j.1945-5100.2009.01008.x
Kouchi A, Kudo T, Nakano H, Arakawa M, Watanabe N (2002) Rapid growth of asteroids owing to very sticky interstellar organic grains. Astrophys J 566: L121-124. https://doi.org/10.1086/339618
Lafay R, Montes-Hernandez G, Janots E, Chiriac R, Findling N, Toche F (2012) Mineral replacement rate of olivine by chrysotile and brucite under high alkaline conditions. J Cryst Growth 347: 62-72. https://doi.org/10.1016/j.jcrysgro.2012.02.040
Lafey R, Montes-Hernandez G, Janots E, Chiriac R, Findling N, Toche F (2014) Simultaneous precipitation of magnesite and lizardite from hydrothermal alteration of olivine under high-carbonate alkalinity. Chem Geol 368: 63-75. https://doi.org/10.1016/j.chemgeo.2014.01.008
Lafey R, Fernandez-Martinez J, Montes-Hernandez G, Auzende AL, Poulain A (2016) Dissolution-reprecipitation and self-assembly of serpentine nanoparticles preceding chrysotile formation: Insights into the structure of proto-serpentine. Am Mineral 101: 2666-2676. https://doi.org/10.2138/am-2016-5772
Lisabeth H, Zhu W, Xing T, De Andrade V (2017) Dissolution-assisted pattern formation during olivine carbonation. Geophys Res Lett 44: 9622-9631. https://doi.org/10.1002/2017GL074393
Luce RW, Bartlett RW, Parks GA (1972) Dissolution kinetics of magnesium silicates. Geochim Cosmochim Acta 36: 35-50. https://ui.adsabs.harvard.edu/abs/1972GeCoA..36...35L/abstract
Malvoisin B, Brunet F, Carlut J, Rouméjon S, Cannat M (2012) Serpentinization of oceanic peridotites: 2. Kinetics and processes of San Carlos olivine hydrothermal alteration. J Geophys Res Solid Earth 117: B04102. https://doi.org/10.1029/2011JB008612
Mauersberger R, Henkel C, Jacq T, Walmsley CM (1988) Deuterated methanol in Orion. Astron Astrophys 194: L1-4.
Millar TJ (2003) Deuterium Fractionation in Interstellar Clouds. Space Sci Rev 106: 73. https://doi.org/10.1023/A:1024677318645
Moore DE, Rymer MJ (2007) Talc-bearing serpentinite and the creeping section of the San Andreas fault. Nature 448: 795-797. https://doi.org/10.1038/nature06064
Nagaoka A, Watanabe N, Kouchi A (2005) H-D substitution in interstellar solid methanol: A key route for D enrichment. Astrophys J 624: L29-32. https://doi.org/10.1086/430304
Nakano H, Kouchi A, Tachibana S, Tsuchiyama A (2003) Evaporation of interstellar organic materials in the solar nebula. Astrophys J 592: 1252-1262. https://doi.org/10.1086/375856
Nakano H, Hirakawa N, Matsubara Y, Yamashita S, Okuchi T, Asahina K, Tanaka R, Suzuki N, Naraoka H, Takano Y, Tachibana S, Hama T, Oba Y, Kimura Y, Watanabe N, Kouchi A (2020) Precometary organic matter: A hidden reservoir of water inside the snow line. Sci Rep 10: 7755. https://doi.org/10.1038/s41598-020-64815-6
Oba Y, Osaka K, Chigai T, Kouchi A, Watanabe N (2016) Hydrogen–deuterium substitution in solid ethanol by surface reactions at low temperatures. Mon Notices Royal Astron Soc 462: 689-695. https://doi.org/10.1093/mnras/stw1714
Oelkers EH, Declercq J, Saldi GD, Gislason SR, Schott J (2018) Olivine dissolution rates: A critical review. Chem Geol 500: 1-19. https://doi.org/10.1016/j.chemgeo.2018.10.008
Owen T, Lutz BL, de Bergh C (1986) Deuterium in the outer Solar System: evidence for two distinct reservoirs. Nature 320: 244-246. https://doi.org/10.1038/320244a0
Parise B, Castets A, Herbst E, Caux E, Ceccarelli C, Mukhopadhyay I, Tielens AGGM (2004) First detection of triply-deuterated methanol. Astron Astrophys 416: 159-163. https://doi.org/10.1051/0004-6361:20034490
Pearson VK, Sephton M, Kearsley AT, Bland PA, Franchi I A, Gilmour I (2002) Clay mineral-organic matter relationships in the early solar system. Meteorit Planet Sci 37 1829-1833. https://doi.org/10.1111/j.1945-5100.2002.tb01166.x
Piani L, Robert F, Remusat L (2015) Micron-scale D/H heterogeneity in chondrite matrices: A signature of the pristine solar system water? Earth Planet Sci Lett 415: 154-164. https://doi.org/10.1016/j.epsl.2015.01.039
Plümper O, Royne A, Magraso A, Jamtveit B (2012) The interface-scale mechanism of reaction-induced fracturing during serpentinization. Geol 40: 1103-1106. https://doi.org/10.1130/G33390.1
Putnis A (2002) Mineral replacement reactions: from macroscopic observations to microscopic mechanisms. Mineral Mag 66: 689-708. https://doi.org/10.1180/0026461026650056
Rambaldi E R, Wasson JT (1981) Metal and associated phases in Bishunpur, a highly unequilibrated ordinary chondrite. Geochim Cosmochim Acta 45: 1001-1015. https://doi.org/10.1016/0016-7037(81)90127-7
Taquet V, Ceccarelli C, Kahane C (2012) Formaldehyde and methanol deuteration in protostars: fossils from a past fast high-density Pre-collapse phase. Astrophys J Lett 748: L3. https://doi.org/10.1088/2041-8205/748/1/L3
Tomeoka K, Buseck PR (1985) Hydrated interplanetary dust particle linked with carbonaceous chondrites? Nature 314: 338-340. https://doi.org/10.1038/314338a0
Ulrich M, Muñoz M, Guillot S, Cathelineau M, Picard C, Quesnel B, Boulvais P, Couteau C (2014) Dissolution-precipitation processes governing the carbonation and silicification of the serpentinite sole of the New Caledonia ophiolite. Contrib to Mineral Petrol 167: 952. https://dx.doi.org/10.1007/s00410-013-0952-8
Vinogradoff V, Le Guillou C, Bernard S, Viennet JC, Jaber M, Remusat L (2020) Influence of phyllosilicates on the hydrothermal alteration of organic matter in asteroids: Experimental perspectives. Geochim Cosmochim Acta 269: 150-166. https://doi.org/10.1016/j.gca.2019.10.029
Walsh C, Millar TJ, Nomura H, Herbst E, Weaver SW, Aikawa Y, Laas JC, Vasyunin AI (2014) Complex organic molecules in protoplanetary disks. Astron Astrophys 563: A33. https://doi.org/10.1051/0004-6361/201322446
Walsh C, Loomis RA, Öberg KI, Kama M, van ’t Hoff MLR, Millar TJ, Aikawa Y, Herbst E, Weaver SLW, Nomura H (2016) First detection of gas-phase methanol in a protoplanetary disk. Astrophys J Lett 823: L10. https://doi.org/10.3847/2041-8205/823/1/L10
Watanabe N, Kouchi A (2008) Ice surface reactions: A key to chemical evolution in space. Prog Surf Sci 83: 439-489. https://doi.org/10.1016/j.progsurf.2008.10.001
Wegner WW, Ernst WG (1983) Experimentally determined hydration and dehydration reaction rates in the system MgO-SiO2-H2O. Am J Sci 283-A: 151-180.
Yada K, Iishi K (1974) Serpentine minerals hydrothermally synthesized and their microstructures. J Cryst Growth 24/25: 627-630. https://doi.org/10.1016/0022-0248(74)90393-5
Yada K, Iishi K (1977) Growth and microstructure of synthetic chrysotile. Am Mineral 62: 958-965.