Adiletta, G., Russo, P., Crescitelli, A., & Di Matteo, M. (2016). Combined pretreatment for enhancing quality of dried and rehydrated eggplant. Food and Bioprocess Technology, 9(11), 1912–1923. https://doi.org/10.1007/s11947-016-1778-y.
An, K., Wu, J., Xiao, H., Hu, T., Yu, Y., Yang, W., Xiao, G., & Xu, Y. (2022). Effect of various drying methods on the physicochemical characterizations, antioxidant activities and hypoglycemic activities of lychee (Litchi chinensis Sonn.) pulp polysaccharides. International Journal of Biological Macromolecules, 220, 510–519. https://doi.org/10.1016/j.ijbiomac.2022.08.083.
Arnold, M., & Gramza-Michalowska, A. (2022). Enzymatic browning in apple products and its inhibition treatments: A comprehensive review. Comprehensive Reviews in Food Science and Food Safety, 21(6), 5038–5076. https://doi.org/10.1111/1541-4337.13059.
Bao, X., Min, R., Zhou, K., Traffano-Schiffo, M. V., Dong, Q., & Luo, W. (2023). Effects of vacuum drying assisted with condensation on drying characteristics and quality of apple slices. Journal of Food Engineering, 340, 111286. https://doi.org/10.1016/j.jfoodeng.2022.111286.
Belwal, T., Cravotto, C., Prieto, M. A., Venskutonis, P. R., Daglia, M., Devkota, H. P., Baldi, A., Ezzat, S. M., Gomez-Gomez, L., Salama, M. M., Campone, L., Rastrelli, L., Echave, J., Jafari, S. M., & Cravotto, G. (2022). Effects of different drying techniques on the quality and bioactive compounds of plant-based products: a critical review on current trends. Drying Technology, 40(8), 1539–1561. https://doi.org/10.1080/07373937.2022.2068028.
Deng, L. Z., Mujumdar, A. S., Zhang, Q., Yang, X. H., Wang, J., Zheng, Z. A., Gao, Z. J., & Xiao, H. W. (2019). Chemical and physical pretreatments of fruits and vegetables: Effects on drying characteristics and quality attributes - a comprehensive review. Critical Reviews in Food Science and Nutrition, 59(9), 1408–1432. https://doi.org/10.1080/10408398.2017.1409192.
Diamante, L. M., Savage, G. P., Vanhanen, L., & Ihns, R. (2012) Effects of maltodextrin level, frying temperature and time on the moisture, oil and beta-carotene contents of vacuum-fried apricot slices. International Journal of Food Science and Technology, 47(2), 325–331. https://doi.org/10.1111/j.1365-2621.2011.02842.x.
Díaz, A., Bomben, R., Dini, C., Viña, S. Z., García, M. A., Ponzi, M., & Comelli, N. (2019). Jerusalem artichoke tuber flour as a wheat flour substitute for biscuit elaboration. LWT-Food Science and Technology, 108, 361–369. https://doi.org/10.1016/j.lwt.2019.03.082.
Fu, Y. P., Li, L. X., Zhang, B. Z., Paulsen, B. S., Yin, Z. Q., Huang, C., Feng, B., Chen, X. F., Jia, R. R., Song, X., Ni, X. Q., Jing, B., Wu, F. M., & Zou, Y. F. (2018). Characterization and prebiotic activity in vitro of inulin-type fructan from Codonopsis pilosula roots. Carbohydrate Polymers, 193, 212–220. https://doi.org/10.1016/j.carbpol.2018.03.065.
Gupta, D. & Chaturvedi, N. (2020). A comparative study on proximate and mineral composition of unprocessed and processed underutilized Jerusalem artichoke tuber flour. International Journal of Pharmaceutical Sciences and Research, 11(9), 4648–4654. https://doi.org/10.1016/j.bcdf.2021.100281.
Li, W., Zhang, J., Yu, C., Li, Q., Dong, F., Wang, G., Gu, G., & Guo, Z. (2015). Extraction, degree of polymerization determination and prebiotic effect evaluation of inulin from Jerusalem artichoke. Carbohydrate Polymers, 121, 315–319. https://doi.org/10.1016/j.carbpol.2014.12.055.
Lv, S. Q., Wang, R. X., Xiao, Y. M., Li, F. C., Mu, Y. W., Lu, Y., Gao, W. T., Yang, B., Kou, Y. X., Zeng, J., & Zhao, C. M. (2019). Growth, yield formation, and inulin performance of a non-food energy crop, Jerusalem artichoke (Helianthus tuberosus L.), in a semi-arid area of China. Industrial Crops and Products, 134, 71–79. https://doi.org/10.1016/j.indcrop.2019.03.064.
Mendez-Yanez, A., Ramos, P. & Morales-Quintana, L. (2022) Human health benefits through daily consumption of Jerusalem artichoke (Helianthus tuberosus L.) tubers. Horticulturae, 8(7), 620. https://doi.org/10.3390/horticulturae8070620.
Nahar, N., Hazra, S., Raychaudhuri, U., & Adhikari, S. (2022). Effect of different drying methods on drying kinetics, modeling, energy-economic, texture profile, color, and antioxidant of lotus rhizomes (Nelumbo nucifera). Journal of Food Processing and Preservation, 46(10), e16842. https://doi.org/10.1111/jfpp.16842.
Polatci, H., Tasova, M., & Sin, B. (2022). Effects of pre-treatments on drying kinetics and energy consumption, heat-mass transfer coefficients, micro-structure of jujube (Zizyphus jujuba L.) fruit. Food Science and Technology, 42, 15721. https://doi.org/10.1590/fst.15721.
Qin, Z., Liu, H. M., Cheng, X. C., & Wang, X. D. (2019). Effect of drying pretreatment methods on structure and properties of pectins extracted from Chinese quince fruit. International Journal of Biological Macromolecules, 137, 801–808. https://doi.org/10.1016/j.ijbiomac.2019.06.209.
Qin, Y. Q., Wang, L. Y., Yang, X. Y., Xu, Y. J., Fan, G., Fan, Y. G., Ren, J. N., An, Q. & Li, X. (2023). Inulin: properties and health benefits. Food & Function, 14(7), 2948–2968. https://doi.org/10.1039/d2fo01096h.
Qiu, L., Zhang, M., Ju, R., Wang, Y., Chitrakar, B., & Wang, B. (2020). Effect of different drying methods on the quality of restructured rose flower (Rosa rugosa) chips. Drying Technology, 38(12), 1632–1643. https://doi.org/10.1080/07373937.2019.1653318.
Rastogi, N. K., Nguyen, L. T., & Balasubramaniam, V. M. (2008). Effect of pretreatments on carrot texture after thermal and pressure-assisted thermal processing. Journal of Food Engineering, 88(4), 541–547. https://doi.org/10.1016/j.jfoodeng.2008.03.016.
Ren, A., Pan, S., Li, W., Chen, G., & Duan, X. (2018) Effect of various pretreatments on quality attributes of vacuum-fried shiitake mushroom chips. Journal of Food Quality, 2018, 4510126. https://doi.org/10.1155/2018/4510126.
Rojas, J. A., Rosell, C. M., & de Barber, C. B. (2001). Role of maltodextrins in the staling of starch gels. European Food Research and Technology, 212(3), 364–368. https://doi.org/10.1007/s002170000218.
Roy, M., Bulbul, M. A. I., Hossain, M. A., Shourove, J. H., Ahmed, S., Sarkar, A., & Biswas, R. (2022). Study on the drying kinetics and quality parameters of osmotic pre-treated dried Satkara (Citrus macroptera) fruits. Journal of Food Measurement and Characterization, 16(1), 471–485. https://doi.org/10.1007/s11694-021-01177-1.
Salazar, N. A., Alvarez, C., & Orrego, C. E. (2018). Optimization of freezing parameters for freeze-drying mango (Mangifera indica L.) slices. Drying Technology, 36(2), 192–204. https://doi.org/10.1080/07373937.2017.1315431.
Salehi, F. (2023). Recent progress and application of freeze dryers for agricultural product drying. Chembioeng Reviews, 10(5), 618–627. https://doi.org/10.1002/cben.202300003.
Sawicka, B., Skiba, D., Pszczolkowski, P., Aslan, I., Sharifi-Rad, J. & Krochmal-Marczak, B. (2020). Jerusalem artichoke (Helianthus tuberosus L.) as a medicinal plant and its natural products. Cellular and Molecular Biology, 66(4), 160–177. https://doi.org/10.14715/cmb/2020.66.4.20.
Siddiqui, S. A., Shrestha, P., Awad, N. M. H., Mortas, M., Povetkin, S. N. & Pathare, P. B. (2024). A review on textural quality analysis of dried food products. Food Reviews International, 40(7), 1854–1874. https://doi.org/10.1080/87559129.2023.2238071.
Su, Y., Zhang, M., Adhikari, B., Mujumdar, A. S., & Zhang, W. (2018). Improving the energy efficiency and the quality of fried products using a novel vacuum frying assisted by combined ultrasound and microwave technology. Innovative Food Science & Emerging Technologies, 50, 148–159. https://doi.org/10.1016/j.ifset.2018.10.011.
Sumic, Z., Vakula, A., Tepic, A., Cakarevic, J., Vitas, J., & Pavlic, B. (2016). Modeling and optimization of red currants vacuum drying process by response surface methodology (RSM). Food Chemistry, 203, 465–475. https://doi.org/10.1016/j.foodchem.2016.02.109.
Szadzinska, J., Lechtanska, J., Pashminehazar, R., Kharaghani, A., & Tsotsas, E. (2019). Microwave- and ultrasound-assisted convective drying of raspberries: Drying kinetics and microstructural changes. Drying Technology, 37, 1–12. https://doi.org/10.1080/07373937.2018.1433199.
Taghinezhad, E., Kaveh, M., Szumny, A., Figiel, A., & Blasco, J. (2023). Qualitative, energy and environmental aspects of microwave drying of pre-treated apple slices. Scientific Reports, 13(1), 16152–16152. https://doi.org/10.1038/s41598-023-43358-6.
Tarafdar, A., Shahi, N. C., Singh, A., & Sirohi, R. (2017). Optimization of freeze-drying process parameters for qualitative evaluation of button mushroom (Agaricus bisporus) using response surface methodology. Journal of Food Quality, 2017, 5043612. https://doi.org/10.1155/2017/5043612.
Varnalis, A. I., Brennan, J. G., & MacDougall, D. B. (2001). A proposed mechanism of high temperature puffing of potato. Part II. Influence of blanching and initial drying on the permeability of the partially dried layer to water vapour. Journal of Food Engineering, 48(4), 369–378. https://doi.org/10.1016/S0260-8774(00)00198-9.
Wang, Z., Hwang, S. H., Lee, S. Y., & Lim, S. S. (2016). Fermentation of purple Jerusalem artichoke extract to improve the α-glucosidase inhibitory effect in vitro and ameliorate blood glucose in db/db mice. Nutrition Research and Practice, 10(3), 282–287. https://doi.org/10.4162/nrp.2016.10.3.282.
Xu, Y., Wan, F., Zang, Z., Jiang, C., Wang, T., Shang, J., & Huang, X. (2024) Effect of different pretreatment methods on drying characteristics and quality of wolfberry (Lycium barbarum) by radio frequency-hot air combined segmented drying. Food and Bioprocess Technology. https://doi.org/10.1007/s11947-024-03340-0.
Zang, Z., Zhang, Q., Huang, X., Jiang, C., He, C., & Wan, F. (2023). Effect of ultrasonic combined with vacuum far-infrared on the drying characteristics and physicochemical quality of Angelica sinensis. Food and Bioprocess Technology, 16(11), 2455–2470. https://doi.org/10.1007/s11947-023-03076-3.
Zhang, L., Liu, W., Ji, J., Deng, L., Feng, Q., Shi, W., & Gao, J. (2021) Inactivation of inulinase and marination of high-quality Jerusalem artichoke (Helianthus tuberosus L.) pickles with screened dominant strains. Frontiers in Bioengineering and Biotechnology, 8, 626861. https://doi.org/10.3389/fbioe.2020.626861.
Zhang, L., Zhang, C., Wei, Z., Huang, W., Yan, Z., Luo, Z., Beta, T., & Xu, X. (2023). Effects of four drying methods on the quality, antioxidant activity and anthocyanin components of blueberry pomace. Food Production Processing and Nutrition, 5(1), 35. https://doi.org/10.1186/s43014-023-00150-3.
Level of significance * p < 0.05, ** p < 0.01, *** p < 0.001