Abbott, WS. A method of computing the effectiveness of insecticides (1925) J Econ Entomol 18:265–267. https://doi.org/10.1093/jee/18.2.265a
Arno J, Gabarra R, Liu TX, Simmons AM, Gerling D (2010) Natural enemies of Bemisia tabaci: predators and parasitoids. In: Stansly PA, Naranjo SE (eds) Bemisia bionomics and management of a global pest. Springer, Dordrecht, pp 385–421
Barzman M, Bàrberi P, Birch NE, Boonekamp P, Dachbrodt-Saaydeh S, Graf B, Hommel B, Jensen JE, Kiss J, Kudsk P, Lamichhane JR, Messéan A, Moonen AC, Ratnadass A, Ricci P, Sarah JL, Sattin M (2015) Eight principles of integrated pest management. Agronomy for Sustainable Development 35:1199–1215.
Bhatt N, Patel MV (2018) Tomato bug, Nesidiocoris tenuis (Reuter): A zoophytophagous insect. J Entomol Zool 6:1550–1556. https://doi.org/10.1007/s10526-012-9486-7
Biondi A, Zappalà L, Di Mauro A, Tropea Garzia G, Russo A, Desneux N, Siscaro G (2016) Can alternative host plant and prey affect phytophagy and biological control by the zoophytophagous mirid Nesidiocoris tenuis? Biocontrol 61:79–90. https://doi.org/10.1007/s10526-015-9700-5
Bouagga S, Urbaneja A, Rambla JL, Flors V, Granell A, Jaques JA, Pérez-Hedo M (2018) Zoophytophagous mirids provide pest control by inducing direct defenses, antixenosis and attraction to parasitoids in sweet pepper plants. Pest Manag Sci 74:1286–1296. https://doi.org/10.1002/ps.4838
Calvo FJ, Bolckmans K, Stansly PA, Urbaneja A (2009) Predation by Nesidiocoris tenuis on Bemisia tabaci and injury to tomato. Biocontrol 54:237–246. https://doi.org/10.1007/s10526-008-9164-y
Calvo FJ, Lorente MJ, Stansly PA, Belda JE (2012) Preplant release of Nesidiocoris tenuis and supplementary tactics for control of Tuta absoluta and Bemisa tabaci in greenhouse tomato. Entomol Exp Appl 143:111–119. https://doi.org/10.1111/j.1570-7458.2012.01238.x
Calvo FJ, Torres-Ruiz A, Velázquez-González JC, Rodríguez-Leyva E, Lomeli-Flores JR (2016) Evaluation of Dicyphus hesperus for biological control of sweet potato whitefly and potato psyllid on greenhouse tomato. Biocontrol 61:415–424. https://doi.org/10.1007/s10526-016-9719-2
Cock MJ, Murphy ST, Kairo MT, Thompson E, Murphy RJ, Francis AW (2016) Trends in the classical biological control of insect pests by insects: an update of the BIOCAT database. Biocontrol 61:349–363. https://doi.org/10.1007/s10526-016-9726-3
Ferguson KB, Visser S, Dalíková M, Provazníková I, Urbaneja A, Pérez-Hedo M, Marec F, Werren JH, Zwaan BJ, Pannebakker BA, Verhulst EC (2020) Jekyll or Hyde? The genome (and more) of Nesidiocoris tenuis, a zoophytophagous predatory bug that is both a biological control agent and a pest. Insect Mol Biol. In press https://doi.org/10.1111/imb.12688.
Garantonakis N, Pappas M, Varikou K, Skiada V, Broufas G, Kavroulakis N, Papadopoulou K (2018) Tomato inoculation with the endophytic strain Fusarium solani K results in reduced feeding damage by the zoophytophagous predator Nesidiocoris tenuis. Front Ecol Evol 6:1–7. https://doi.org/10.3389/fevo.2018.00126
Gentz MC, Murdoch G, King GF (2010) Tandem use of selective insecticides and natural enemies for effective, reduced-risk pest management. Biol Control 52:208–215. https://doi.org/10.1016/j.biocontrol.2009.07.012.
Ghoneim K (2014) Predatory Insects and Arachnids as Potential Biological Control Agents against the Invasive Tomato Leaf Miner, Tuta absoluta Meyrick (Lepidoptera: Gelechiidae): In Perspective and Prospective. J Entomol Zool 2: 52–71.
Huang N, Enkegaard A, Osborne LS, Ramakers PMJ, Messelink GJ, Pijnakker J and Murphy G (2011) The Banker Plant Method in Biological Control, CRC Crit Rev Plant Sci, 30:3, 259-278, https://doi.org/10.1080/07352689.2011.572055
Hull LA, Beers EH (1985) Ecological selectivity: Modifying chemical control practices to preserve natural enemies. In: Hoy, M.A. and Herzog, D.C. (eds), Biological Control in Agricultural IPM Systems. Academic Press, Orlando, FL, pp. 103–122.
McEvoy PB, Coombs EM (2000) Why things bite back: unintended consequences of biological weed control. In: Follett PA, Duan JJ (eds) Nontarget effects of biological control. Kluwer Academic Publishers, Boston, pp 167–194
Moerkens R, Pekas A, Bellinkx S, Hanssen I, Huysmans M, Bosmans L, Wackers F (2020) Nesidiocoris tenuis as a pest in Northwest Europe: Intervention threshold and influence of Pepino mosaic virus. J Appl Entomol 144:566–577. https://doi.org/10.1111/jen.12789
Nakaishi K, Fukui Y, Arakawa R (2011) Reproduction of Nesidiocoris tenuis (Reuter) on Sesame. Jpn J Appl Entomol Zool 55:199–205. https://doi.org/10.1303/jjaez.2011.199 (in japanese with English abstract)
Nakano R, Tsuchida Y, Doi M, Ishikawa R, Tatara A, Amano Y, Muramatsu Y (2016) Control of Bemisia tabaci (Gennadius) on tomato in greenhouse by a combination of Nesidiocoris tenuis (Reuter) and banker plants. Ann Rep Kansai Pl Prot 58:65–72 https://doi.org/10.4165/kapps.58.65 (in japanese with English abstract)
NARO (2019) New manual for tomato pest control system that reduces the use of synthetic insecticides. (In Japanese)https://www.naro.affrc.go.jp/publicity_report/publication/files/SIPtomatomanual190404- 2205s.pdf (24th of August, 2020)
Ogino T, Uehara T, Muraji M, Yamaguchi T, Ichihashi T, Suzuki T, Kainoh Y, Shimoda M (2016) Violet LED light enhances the recruitment of a thrip predator in open fields. Sci Rep 6:32302. https://doi.org/10.1038/srep32302
Orr D (2009) Biological control and integrated pest management. In: Peshin R, Dhawan A (eds) Integrated pest management: innovation-development process. Springer, Dordrecht, pp 207–239
Owashi Y, Hayashi M, Abe J, Kazuki M (2019) Effects of an alternative diet of Artemia cysts on the development and reproduction of Nesidiocoris tenuis (Hemiptera: Miridae). Appl Entomol Zool. 55: 121–127. https://doi.org/10.1007/s13355-019-00660-y
Park YG, Lee JH (2021) UV-LED lights enhance the establishment and biological control efficacy of Nesidiocoris tenuis (Reuter) (Hemiptera: Miridae). PLoS ONE 16(1): e0245165. https://doi.org/10.1371/journal.pone.0245165
Pérez-Hedo M, Urbaneja A (2015) Prospects for predatory mirid bugs as biocontrol agents of aphids in sweet peppers. J Pest Sci 88:65–73 https://doi.org/10.1007/s10340-014-0587-1
Pérez-Hedo M, Urbaneja A (2016) The zoophytophagous predator Nesidiocoris tenuis: A successful but controversial biocontrol agent in tomato crops. Horowitz, A & Ishaaya, I., In: Advances in Insect Control and Resistance Management. Cham: Springer International Publishing, pp. 121–138.
Pérez-Hedo M, Suay R, Alonso M, Ruocco M, Giorgini M, Poncet C, Urbaneja A (2017). Resilience and robustness of IPM in protected horticulture in the face of potential invasive pests. Crop Prot 97, 119–127. https://doi.org/10.1016/j.cropro.2016.11.001
Pérez-Hedo M, Rambla JL, Granell A, Urbaneja A (2018) Biological activity and specificity of Miridae-induced plant volatiles. Biocontrol 63: 203–213. https://doi.org/10.1007/s10526-017-9854-4
Pérez-Hedo M, Riahi C, Urbaneja A (2020) Use of zoophytophagous mirid bugs in horticultural crops: Current challenges and future perspectives. Pest Manag Sci 77:33–42. https://doi.org/10.1002/ps.6043
Ruberson JR, Nemoto H, Hirose Y (1998) Pesticides and conservation of natural enemies in pest management. In: Barbosa, P. (ed), Conservation Biological Control. Academic Press, San Diego, CA, pp. 207–220.
Saito T, Takagi M, Tezuka T, Ogawara T, Wari D, (2021) Augmenting Nesidiocoris tenuis (Nesidiocoris) with a factitious diet of Artemia cysts to control Bemisia tabaci (Gennadius) on tomato plants under greenhouse conditions. Insects 12:265. https://doi.org/10.3390/insects12030265
Sanchez JA (2008) Zoophytophagy in the plant bug Nesidiocoris tenuis. Agric For Entomol 10:75–80. https://doi.org/10.1111/j.1461-9563.2007.00357.x
Sanchez JA, Lacasa A (2008) Impact of the zoophytophagous plant bug Nesidiocoris tenuis (Heteroptera: Miridae) on tomato yield. J Econ Entomol 101:1864–1870. https://doi.org/10.1603/0022-0493-101.6.1864
Sanchez JA (2009) Density thresholds for Nesidiocoris tenuis (Heteroptera: Miridae) in tomato crops. Biol Control 51:493–498. https://doi.org/10.1016/j.bioco ntrol.2009.09.006
Shimoda M, Honda K (2013) Insect reactions to light and its applications to pest management. Appl Entomol Zool 48:413–421. https://doi.org/10.1007/s13355-013-0219-x
Shipp JL, Wang K (2006) Evaluation of Dicyphus hesperus (Heteroptera: Miridae) for biological control of Frankliniella occidentalis (Thysanoptera: Thripidae) on greenhouse tomato. J Econ Entomol 99:414–420 https://doi.org/10.1603/0022-0493-99.2.414.
Trottin-Caudal Y, Millot P (1997) Etude de deux mirides en culture de tomate: Macrolophus caliginosus Wagner et Nesidiocoris (Cyrtopeltis) tenuis Reuter. Infos Paris, 131, 40–44.
Trottin-Caudal Y, Fournier C, Leyre JM, Chabriere C (2006) La tomate sous serre dans le Sud-Est de la France. Protection contre la punaise Nesidiocoris tenuis. Infos Ctifl, 224, 30–35.
Torres JB, Bueno AF (2018) Conservation biological control using selective insecticides – A valuable tool for IPM, Biol Control 126:53–64, https://doi.org/10.1016/j.biocontrol.2018.07.012.
Uehara T, Ogino T, Nakano A, Tezuka T, Yamaguchi T, Kainoh Y, Shimoda M (2019) Violet light is the most effective wavelength for recruiting the predatory bug Nesidiocoris tenuis. Biocontrol 64:139–147. https://doi.org/10.1007/s10526-019-09926-4
Urbaneja A, Montón H, Mollá O (2009) Suitability of the tomato borer Tuta absoluta as prey for Macrolophus caliginosus and Nesidiocoris tenuis. J Appl Entomol 133:292–296. https://doi.org/10.1111/j.1439-0418.2008.01319.x
Wari D, Okada R, Takagi T, Yaguchi M, Kashima T, Ogawara T (2020) Augmentation and compatibility of Beauveria bassiana with pesticides against different growth stages of Bemisia tabaci (Gennadius); an in-vitro and field approach. Pest Manag Sci 76:3236-3252; https://doi.org/10.1002/ps.5881
Wari D, Takagi M, Ogawara T (2021) Simplified insecticide toxicity determination method for Nesidiocoris tenuis using contaminated diet. MethodsX, 8:101220. https://doi.org/10.1016/j.mex.2021.101220.
Yano E, Nakauchi M, Watanabe T, Watanabe H, Hosaka S, Nishimori S, Miura S, Kandori I, Hinomoto N (2020) Life history traits of Nesidiocoris tenuis on Bemisia tabaci and Thrips palmi. Biocontrol 2020, 65, 155–164 https://doi.org/10.1007/s10526-019-09979-5