[1] Dadami ST, Rayaprol S, Sathe V, Angadi B(2020) Electric field induced structural, magnetic and ferroelectric properties of 0.6PbFe0.5Nb0.5O3-0.4BiFeO3 multiferroic solid solution. Ceram Int 46: 27595-27600. https://doi.org/10.1016/j.ceramint.2020.07.253.
[2] Fiebig M, Lottermoser T, Frolich D, Goltsev AV, Pisarev RV(2002)Observation of coupled magnetic and electric domains. Nature 419:818-820. https://doi.org/10.1038 /nature01077.
[3] Erenstein E , Mathur ND, Scott JF(2006) Multiferroic and magnetoelectric materials. Nature 442:759-765 .https://doi.org/10.1038/nature05023.
[4] Gajek M, Bibes M, Fusil S, Bouzehouane K, Fontcuberta J, Barthélémy A, Fert A (2007) Tunnel Junctions multiferroic barriers Nat Mater 6:296-302. https: //doi.org/ 1038 /nmat1860.
[5] Bensaid D, Benkhettou NE, Kourdassi A(2011) Structural and Electronic Properties of BiXO3. J Modern Phys 2: 642-650. http://dx.doi.org/10.4236/jmp.2011.27075.
[6] Assirey EAR (2019) Perovskite synthesis, properties and their related biochemical and industrial application.Saudi Pharma J27:817-829.https://doi.org/10.1016/j.jsps.2019.05.00 3.
[7] Miura K, Azuma M, Funakubo (2011) H Electronic and Structural Properties of ABO3: Role of the B-O Coulomb Repulsions Ferroelectricity. Mater 4:260-273. https://doi.org/10.33 90 /ma4010260.
[8] Miura K, Furuta T(2010) First-principles study of structural trend of BiMO3 and BaMO3: Relationship between tetragonal and rhombohedral structure and the tolerance factors. Jpn J Appl Phys 49: 031501. https://doi.org/10.1143/JJAP.49.031501.
[9] Bai L, Sun M, Ma W, Yang J, Zhang J, Liu Y (2020) Enhanced Magnetic Properties of Co-Doped BiFeO3 Thin Films via Structural Progression. J Nanomater10:1-13.https:// doi.org/ 10.3390/nano10091798.
[10] Cebela M, Zagorac D, Batalovic K, Radakovic J, Stojadinovic B, Spasojevic V, Hercigonja R (2017) BiFeO3 Perovskites: A multidisciplinary approach to multiferroic. Ceram Int 43: 1256- 1264. https://doi.org/10.1016/j.ceramint.2016.10.074.
[11] Khomchenko VA, Karpinsky DV, Latushka SI, Franz A, Sikoleo VV, Dubkov SV, Silibin MV, Paixao JA (2019) The structural origin of composition-driven magnetic transformation in BiFeO3-based multiferroics: a neutron diffraction study. J Mater Chem C7: 6085-6090. https://doi.org/10.1039/C9TC01521C.
[12] Srihari NV, Vinayakumar KB, Nagaraja KK (2020) Magnetoelectric Coupling in Bismuth Ferrite-Challenges and Perspectives.Coatings10:1-19. https://doi.org /10.33 90/ coatings10121221.
[13] Catalan G, Scott JF(2009) Physics and applications of bismuth ferrite. Adv Mater 21: 2463–2485. https://doi.org/10.1002/adma.200802849.
[14] Kubel F, Schmid H (1990) Structure of a ferroelectric and ferroelastic mono domain crystal of the perovskite BiFeO3. Acta Cryst 46:698–702.https://doi.org/10.1107/S0 108 768190006887.
[15] Chen Z, Bai X, Wang H, Du J, Bai W, Li L, Wen F, Zheng P, Wu W, Z L, Zhang Y(2020) Achieving high-energy storage performance in 0.67Bi1-xSmxFeO3-0.33BaTi O3 lead-free relaxor ferroelectric ceramics. Ceram Int 46:11549-11555. https://doi. org /10.1016/j.cera mint.2020.01.181.
[16] Walker J, Ursic H, Bencan A, Malic B, Simons H, Reaney I, Viola G, Nagarajan V, Rojac T (2016) Temperature dependent piezoelectric response and strain–electric-field hysteresis of rare-earth modified bismuth ferrite ceramics. J Mater Chem33:7859-7868.https://doi.org /10. 1039/C6TC02000C.
[17] Gaur A, Singh P, Choudhary N, Kumar D, Shariq M, Singh K, Kaur N, Kaur D(2011) Structural optical and magnetic properties of Nd-doped BiFeO3 thin films prepared by
pulsed laser deposition. Phys B Condens Matter 406:1877-1882. https://doi.org /10.1016/ j.physb.2011.02.046.
[18] Huong NT, Lee S, Atabaev TS, Kurisu M, Hong NH (2015) Rare Earth-Doped BiFeO3 Thin Films: Relationship between structural and magnetic properties. Adv CondensMatter Phys 371802. http://dx.doi.org/10.1155/2015/371802.
[19] Auromun K , Hajra S , Choudhary RNP, Behera B (2020) Structural, dielectric and Electrical characteristics of yttrium modified 0.7BiFeO3-0.3PbTiO3. Solid StateSciences 101:106139. https://doi.org/10.1016/j.solidstatesciences.2020.106139.
[20] BaoLin F, Hao X, Xian XZ (2010) Structure and multiferroic properties of Y-dopedBiFeO3 ceramics. Chinese Sci Bull 55:452−456.https://doi.org/10.1007/s11434-009- 0293-1.
[21] Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crys A 32: 751–767.https://doi.org/10.1107/ S0567739476001551.
[22] Singh A, Chatterjee R (2012) Multiferroic properties of La-rich BiFeO3– PbTiO3 solid solutions, Ferroelectrics.433:180–189.https://doi.org/10.1080/00150193.2012.722462.
[23] Pradhan SK, Das SN, Bhuyan S (2020) Structural, morphological and dielectric features of neodymium doped BiFeO3-PbTiO3 electronic system. Mater Today 35:73-75. https:// doi.org /10. 1016 /j.matpr.2020.02.866.
[24] Yuan GL, Or WS, Chan HLW (2006) Raman scattering spectra and ferroelectric properties of Bi1-xNdxFeO3(x=0-0.2) multiferroic ceramics. J Appl Phys101:064101. https://doi.org/10.1063 /1.2433709.
[25] Kothari D, Reddy R, Sathe VG, Gupta A, Banerjee A, Awasthi AM (2008) Raman scattering study of polycrystalline magnetoelectric BiFeO3. J Magn Magn Mater 320:548–https://doi.org/10.1016/j.jmmm.2007.07.016.
[26] Nadeem M, Khan W, Khan S, Husain S, Ansari A (2018) Tailoring dielectric properties and Multiferroic behavior of nano crystalline BiFeO3 via Ni doping. J ApplPhys 124:164105. https://doi.org/10.1063/1.5050946.
[27] Polomska M, Hilczera B, Wolaka J, Pietraszko A, Balcerzak M, Jurczyk M, Jakubowicz J (2014) XRD and Raman spectroscopy studies of (Bi1-xLaxFeO3)0.5(Pb TiO3)0.5 solid solution. Ph Trans87:909-921.http://dx.doi.org/ 10.1080/01411594. 2014. 953519.
[28] Varshney D, Kumar A (2013) Structural, Raman and dielectric behavior in Bi1- xSrxFeO3 multiferroic. J Mol Struct 1038: 242–249. https://doi.org/10.1016 /j.mo Lstruc.2013.01.065.
[29] Kumar KV, Voora S, Raghavender AT (2018) Structural and dielectric properties of barium doped BFO. Mater Today 5:26450-26459.https://doi.org/10.1016/j.matpr.201 8.08. 099 .
[30] Dai Z, Akishige Y (2010) Electrical properties of multiferroic BiFeO3 ceramics synthesized by spark plasma sintering. J Phys D: Appl Phys 43:445403. https://doi.org/10.1088/00223727/43/44/445403.
[31] Sati PC, Kumar M, Chhoker S (2015) Raman spectroscopy and enhanced magnetic and dielectric properties of Pr and Ti codoped BiFeO3 ceramics. J Mater Sci 26:530-538.https:// doi. org/10.1007/s10854-014-2431-z.
[32] Kumari P, Rai R, Sharma S, Valente MA (2017) Dielectric, electrical conduction and magnetic properties of multiferroic Bi0.8Tb0.1Ba0.1Fe0.9Ti0.1O3 perovskite compound. J Adv Dielect 7:1750034. https://doi.org/10.1142/S2010135X17500345.
[33] Singh H, Yadav KL (2015) Structural, dielectric, vibrational and magnetic properties of Sm doped BiFeO3 multiferroic ceramics prepared by a rapid liquid phase sintering method. Ceram Int 41: 9285–9295. http://dx.doi.org/10.1016/j.ceramint.2015.03.212.
[34] Singh H, Yadav KL (2015) Synthesis and thermal, structural, dielectric, magnetic andmagnetoelectric Studies of BiFeO3-MgFe2O4Nanocomposites. J Am Ceram Soc98:574–https://doi.org/10.1111/jace.13316.
[35] Kumar N, Narayan B, Kumar M, Singh AK, Dhiman S, Kumar S (2019) Effect of Nd3+ substitution on structural, ferroelectric, magnetic and electrical properties of BiFeO3– PbTiO3binary system.SN Appl Sci 1:874-881.https://doi.org/10.1007/s42452-019-0919-0.
[36] Freitas VF, Santos IA, Botero E, Fraygola BM, Garcia D, Eiras JA (2010) Piezoelectric characterization of (0.6)BiFeO3–(0.4)PbTiO3 multiferroic ceramics. J Am Ceram Soc 94:754–758.https://doi.org/10.1111/j.1551-2916.2010.04118.x.
[37] Basumallick A, Bhushan B, Bandopadhyay SK, Vasanthacharya NY, Das D (2009)Effect of alkaline earth metal doping on thermal, optical, magnetic and dielectric properties of BiFeO3 nano particles. J Phys D Appl Phys 42:065004. https://doi.org/10.1088/0022-3727/42/6/065004.
[38] Mishra KK, Satya AT, Bharathi A, Sivasubramanian V, Murthy VRK, Arora AK (2011)Vibrational, magnetic, and dielectric behavior of La-substituted BiFeO3-PbTiO3. J ApplPhys 110: 123529. https://doi.org/10.1063/1.3673240.
[39] Markiewicz E, Andrzejewski B, Hilczer B, Balcerzak M, Pietraszko A, Jurczyk M, Kuświk P (2015) Dielectric and magnetic properties of(Bi1xLaxFeO3)0.5(PbTiO3)0.5 ceramics prepared by high energy mechanochemical technique. J Electro ceram 35:33-44. https://doi.org/10.1007/s10832-015-9989-6.
[40] Zhu WM, Guo HY, Yea ZG (2007) Structure and properties of multiferroic (1 − x) BiFeO3– xPbTiO3 single crystals. J Mater Res 22:2136-2143.https://doi.org /10.1557/ jmr.2007.0268.
[41] Jayakumar OD, Achary SN, Girija KG, Tyagi AK, Sudakar C, Lawes G, Naik R, Nisar J, Peng X, Ahuja R (2010) Theoretical and experimental evidence of enhanced ferromagnetism in Ba and Mn cosubstituted BiFeO3. Appl Phys Lett96:032903. https:/doi . org/10.1063/1.32 80043.
[42] Zang Y , Xie D, Chen Y, Li M, Han X , Ren T, Plant D (2012) Comparative Study on Structural and Ferroelectric Properties of Dual-Site Rare-Earth Ions Substituted Multi ferroelectric BiFeO3 , Integrated Ferroelectrics. An International Journal 132:30-38. http://dx.doi.org/10.1080/10584587.2012.660435.
[43] Hu H, Krupanidhi SB (1994) Current-voltage characteristics of ultrafine-grained ferroelectric Pb(Zr,Ti)O3 thin-films. J Mater Res 9:1484–1498.https://doi.org/10.1557 JMR.19 94.14.
[44] Yang JK, Kim WS, Park HR (2001) Effect of grain size of Pb(Zr0.3Ti0.6)O-3 sol-gel derived thin films on the ferroelectric properties. Appl Surf Sci 169:544–548. https:// doi.org/10.1016/S0169-4332(00)00718-2.
[45] Sahu T, Behera B (2017) Investigation on structural, dielectric and ferroelectric Properties of samarium-substituted BiFeO3–PbTiO3 composites. J Adv Dielect7:1750001.https://doi. Org/ 10.1142/S2010135X17500011.
[46] Cheng BL, Button TW, Gabbay M (2005) Oxygen vacancy relaxation and domain wall hysteresis motion in cobalt-doped barium titanate ceramics. J Am Ceram Soc 88:907–https://doi.org/10.1111/j.1551-2916.2005.00167.x.
[47] Scott JF, Dawber M (2000) Oxygen- vacancy ordering as a fatigue mechanism in perovskite ferroelectrics. Appl Phys Lett 76:3800. https://doi.org/ 10.1063/ 1.126786.