1. Brenner DR, Weir HK, Demers AA, Ellison LF, Louzado. Cheryl, Shaw A, et al. Projected estimates of cancer in Canada in 2020. CMAJ [Internet]. 2020;192:199–205. Available from: www.cmaj.ca/lookup/suppl/
2. Lheureux S, Gourley C, Vergote I, Oza AM. Epithelial ovarian cancer. The Lancet. 2019 Mar 23;393(10177):1240–53.
3. Lengyel E, Burdette JE, Kenny HA, Matei D, Pilrose J, Haluska P, et al. Epithelial ovarian cancer experimental models. Oncogene. 2014 Jul 10;33(28):3619–33.
4. Bowtell DD, Böhm S, Ahmed AA, Aspuria PJ, Bast RC, Beral V, et al. Rethinking ovarian cancer II: reducing mortality from high-grade serous ovarian cancer [Internet]. Nature Publishing Group. 2015. Available from: www.nature.com/reviews/cancer
5. Rakina M, Kazakova A, Villert A, Kolomiets L, Larionova I. Spheroid Formation and Peritoneal Metastasis in Ovarian Cancer: The Role of Stromal and Immune Components. Vol. 23, International Journal of Molecular Sciences. MDPI; 2022.
6. Iwanicki MP, Davidowitz RA, Ng MR, Besser A, Muranen T, Merritt M, et al. ovarian cancer spheroids Use Myosin-Generated Force to clear the Mesothelium. Available from: www.aacrjournals.org
7. Tomas E, Shepherd TG. Insights into high-grade serous carcinoma pathobiology using three-dimensional culture model systems. Vol. 16, Journal of Ovarian Research. BioMed Central Ltd; 2023.
8. Correa RJM, Peart T, Valdes YR, Dimattia GE, Shepherd TG. Modulation of AKT activity is associated with reversible dormancy in ascites-derived epithelial ovarian cancer spheroids. Carcinogenesis. 2012 Jan 1;33(1):49–58.
9. Rafehi S, Valdes YR, Bertrand M, McGee J, Préfontaine M, Sugimoto A, et al. TGFβ signaling regulates Epithelial-mesenchymal plasticity in ovarian cancer ascites-derived spheroids. Endocr Relat Cancer. 2016 Mar 1;23(3):147–59.
10. Peart T, Ramos Valdes Y, Correa RJM, Fazio E, Bertrand M, Mcgee J, et al. Intact LKB1 activity is required for survival of dormant ovarian cancer spheroids [Internet]. Available from: www.impactjournals.com/oncotarget
11. Buensuceso A, Ramos-Valdes Y, Di Mattia GE, Shepherd TG. AMPK-independent LKB1 activity is required for efficient epithelial ovarian cancer metastasis. Molecular Cancer Research. 2020;18(3):488–500.
12. Correa RJM, Valdes YR, Peart TM, Fazio EN, Bertrand M, McGee J, et al. Combination of AKT inhibition with autophagy blockade effectively reduces ascites-derived ovarian cancer cell viability. Carcinogenesis. 2014;35(9):1951–61.
13. Aman Y, Schmauck-Medina T, Hansen M, Morimoto RI, Simon AK, Bjedov I, et al. Autophagy in healthy aging and disease. Vol. 1, Nature Aging. Springer; 2021. p. 634–50.
14. Chun Y, Kim J. Autophagy: An essential degradation program for cellular homeostasis and life. Vol. 7, Cells. MDPI; 2018.
15. Yun CW, Lee SH. The roles of autophagy in cancer. Vol. 19, International Journal of Molecular Sciences. MDPI AG; 2018.
16. Tan L, Tan Y, Liu D. Functions of ULK1 in autophagy and non-autophagy pathways and its implications in human physiology and disease. Biocell. 2021;44(4):535–43.
17. Park JM, Lee DH, Kim DH. Redefining the role of AMPK in autophagy and the energy stress response. Nat Commun. 2023 Dec 1;14(1).
18. Guo JY, White E. Autophagy, metabolism, and cancer. Cold Spring Harb Symp Quant Biol. 2016;81(1):73–8.
19. Debnath J, Gammoh N, Ryan KM. Autophagy and autophagy-related pathways in cancer. Vol. 24, Nature Reviews Molecular Cell Biology. Nature Research; 2023. p. 560–75.
20. Onorati A V., Dyczynski M, Ojha R, Amaravadi RK. Targeting autophagy in cancer. Vol. 124, Cancer. John Wiley and Sons Inc.; 2018. p. 3307–18.
21. Roy A, Bera S, Saso L, Dwarakanath BS. Role of autophagy in tumor response to radiation: Implications for improving radiotherapy. Vol. 12, Frontiers in Oncology. Frontiers Media S.A.; 2022.
22. Liu T, Zhang J, Li K, Deng L, Wang H. Combination of an Autophagy Inducer and an Autophagy Inhibitor: A Smarter Strategy Emerging in Cancer Therapy. Vol. 11, Frontiers in Pharmacology. Frontiers Media S.A.; 2020.
23. Amaravadi RK, Kimmelman AC, Debnath J. Targeting autophagy in cancer: Recent advances and future directions. Vol. 9, Cancer Discovery. American Association for Cancer Research Inc.; 2019. p. 1167–81.
24. Das CK, Mandal M, Kögel D. Pro-survival autophagy and cancer cell resistance to therapy. Vol. 37, Cancer and Metastasis Reviews. Springer New York LLC; 2018. p. 749–66.
25. Liu L, Yan L, Liao N, Wu WQ, Shi JL. A review of ULK1-mediated autophagy in drug resistance of cancer. Vol. 12, Cancers. MDPI AG; 2020.
26. Correa RJM, Peart T, Valdes YR, Dimattia GE, Shepherd TG. Modulation of AKT activity is associated with reversible dormancy in ascites-derived epithelial ovarian cancer spheroids. Carcinogenesis. 2012 Jan 1;33(1):49–58.
27. Singha B, Laski J, Ramos Valdés Y, Liu E, Dimattia GE, Shepherd TG. Inhibiting ULK1 kinase decreases autophagy and cell viability in high-grade serous ovarian cancer spheroids [Internet]. Vol. 10, Am J Cancer Res. 2020. Available from: www.ajcr.us/
28. Perets R, Wyant GA, Muto KW, Bijron JG, Poole BB, Chin KT, et al. Transformation of the Fallopian Tube Secretory Epithelium Leads to High-Grade Serous Ovarian Cancer in Brca;Tp53;Pten Models. Cancer Cell. 2013 Dec 9;24(6):751–65.
29. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: An open-source platform for biological-image analysis. Vol. 9, Nature Methods. 2012. p. 676–82.
30. Arganda-Carreras I, Kaynig V, Rueden C, Eliceiri KW, Schindelin J, Cardona A, et al. Trainable Weka Segmentation: A machine learning tool for microscopy pixel classification. Bioinformatics. 2017 Aug 1;33(15):2424–6.
31. Varghese F, Bukhari AB, Malhotra R, De A. IHC profiler: An open source plugin for the quantitative evaluation and automated scoring of immunohistochemistry images of human tissue samples. PLoS One. 2014 May 6;9(5).
32. Singha B, Laski J, Ramos Valdés Y, Liu E, Dimattia GE, Shepherd TG. Inhibiting ULK1 kinase decreases autophagy and cell viability in high-grade serous ovarian cancer spheroids [Internet]. Vol. 10, Am J Cancer Res. 2020. Available from: www.ajcr.us/
33. Liu WJ, Ye L, Huang WF, Guo LJ, Xu ZG, Wu HL, et al. p62 links the autophagy pathway and the ubiqutin-proteasome system upon ubiquitinated protein degradation. Vol. 21, Cellular and Molecular Biology Letters. BioMed Central Ltd.; 2016.
34. Runwal G, Stamatakou E, Siddiqi FH, Puri C, Zhu Y, Rubinsztein DC. LC3-positive structures are prominent in autophagy-deficient cells. Sci Rep. 2019 Dec 1;9(1).
35. Gammoh N. The multifaceted functions of ATG16L1 in autophagy and related processes. J Cell Sci. 2020 Oct 15;133(20).
36. Kim S, Choi S, Kang D. Quantitative and qualitative analysis of autophagy flux using imaging. BMB Rep. 2020;53(5):241–7.
37. Kroeger PT, Drapkin R. Pathogenesis and heterogeneity of ovarian cancer. Vol. 29, Current Opinion in Obstetrics and Gynecology. Lippincott Williams and Wilkins; 2017. p. 26–34.
38. Demeter A, Romero-Mulero MC, Csabai L, Ölbei M, Sudhakar P, Haerty W, et al. ULK1 and ULK2 are less redundant than previously thought: computational analysis uncovers distinct regulation and functions of these autophagy induction proteins. Sci Rep. 2020 Dec 1;10(1).
39. Al Habyan S, Kalos C, Szymborski J, McCaffrey L. Multicellular detachment generates metastatic spheroids during intra-abdominal dissemination in epithelial ovarian cancer. Oncogene. 2018 Sep 13;37(37):5127–35.
40. Tan L, Tan Y, Liu D. Functions of ULK1 in autophagy and non-autophagy pathways and its implications in human physiology and disease. Biocell. 2021;44(4):535–43.
41. Shepherd TG, Dick FA. Principles of dormancy evident in high-grade serous ovarian cancer. Vol. 17, Cell Division. BioMed Central Ltd; 2022.
42. Guo Y, Pan W, Liu S, Shen Z, Xu Y, Hu L. ERK/MAPK signalling pathway and tumorigenesis (Review). Exp Ther Med. 2020 Jan 15;
43. Zachari M, Ganley IG. The mammalian ULK1 complex and autophagy initiation. Vol. 61, Essays in Biochemistry. Portland Press Ltd; 2017. p. 585–96.
44. Wheeler LJ, Watson ZL, Qamar L, Yamamoto TM, Sawyer BT, Sullivan KD, et al. Multi-Omic Approaches Identify Metabolic and Autophagy Regulators Important in Ovarian Cancer Dissemination. iScience. 2019 Sep 27;19:474–91.
45. Mizushima N. The role of the Atg1/ULK1 complex in autophagy regulation. Vol. 22, Current Opinion in Cell Biology. 2010. p. 132–9.
46. Correa RJM, Valdes YR, Shepherd TG, DiMattia GE. Beclin-1 expression is retained in high-grade serous ovarian cancer yet is not essential for autophagy induction in vitro. J Ovarian Res. 2015 Aug 4;8(1).
47. Zhou Z, Zhao J, Liu Y, Yan X, Sun H, Xia M, et al. Autophagy promotes invadopodia formation in human ovarian cancer cells via the p62-extracellular signal-regulated kinase 1/2 pathway. Exp Ther Med. 2021 Jul 5;22(3).
48. Brun SN, Sancar G, Lumibao J, Limpert AS, Ren H, Ianniciello A, et al. The autophagy initiating kinase ULK1 is required for pancreatic cancer cell growth and survival. Available from: https://doi.org/10.1101/2021.05.15.444304
49. Xue ST, Li K, Gao Y, Zhao LY, Gao Y, Yi H, et al. The role of the key autophagy kinase ULK1 in hepatocellular carcinoma and its validation as a treatment target. Autophagy. 2020 Oct 2;16(10):1823–37.
50. Deng R, Zhang HL, Huang JH, Cai RZ, Wang Y, Chen YH, et al. MAPK1/3 kinase-dependent ULK1 degradation attenuates mitophagy and promotes breast cancer bone metastasis. Autophagy. 2021;17(10):3011–29.
51. Quinn MCJ, McCue K, Shi W, Johnatty SE, Beesley J, Civitarese A, et al. Identification of a locus near ULK1 associated with progression-free survival in ovarian cancer. Cancer Epidemiology Biomarkers and Prevention. 2021 Sep 1;30(9):1669–80.
52. Nie X, Liu D, Zheng M, Li X, Liu O, Guo Q, et al. HERPUD1 promotes ovarian cancer cell survival by sustaining autophagy and inhibit apoptosis via PI3K/AKT/mTOR and p38 MAPK signaling pathways. BMC Cancer. 2022 Dec 1;22(1).
53. Hu L, Cong L. Fibroblast growth factor 19 is correlated with an unfavorable prognosis and promotes progression by activating fibroblast growth factor receptor 4 in advanced-stage serous ovarian cancer. Oncol Rep. 2015 Nov 1;34(5):2683–91.