1. Lunney JK, Van Goor A, Walker KE, Hailstock T, Franklin J, Dai C. Importance of the pig as a human biomedical model. Sci Transl Med. 2021; doi: 10.1126/scitranslmed.abd5758.
2. Niu D, Ma X, Yuan T, Niu Y, Xu Y, Sun Z, et al.. Porcine genome engineering for xenotransplantation. Advanced Drug Delivery Reviews. 2021; doi: 10.1016/j.addr.2020.04.001.
3. Klymiuk N, Seeliger F, Bohlooly-Y M, Blutke A, Rudmann DG, Wolf E. Tailored Pig Models for Preclinical Efficacy and Safety Testing of Targeted Therapies. Toxicol Pathol. 2016; doi: 10.1177/0192623315609688.
4. Wells KD, Prather RS. Genome‐editing technologies to improve research, reproduction, and production in pigs. Molecular Reproduction Devel. 2017; doi: 10.1002/mrd.22812.
5. Warr A, Affara N, Aken B, Beiki H, Bickhart DM, Billis K, et al.. An improved pig reference genome sequence to enable pig genetics and genomics research. GigaScience. 2020; doi: 10.1093/gigascience/giaa051.
6. Ma H, Jiang J, He J, Liu H, Han L, Gong Y, et al.. Long‐read assembly of the Chinese indigenous Ningxiang pig genome and identification of genetic variations in fat metabolism among different breeds. Molecular Ecology Resources. 2022; doi: 10.1111/1755-0998.13550.
7. Zhou R, Li S, Yao W, Xie C, Chen Z, Zeng Z, et al.. The Meishan pig genome reveals structural variation‐mediated gene expression and phenotypic divergence underlying Asian pig domestication. Mol Ecol Resour. 2021; doi: 10.1111/1755-0998.13396.
8. Jiang Y-F, Wang S, Wang C-L, Xu R-H, Wang W-W, Jiang Y, et al.. Pangenome obtained by long-read sequencing of 11 genomes reveal hidden functional structural variants in pigs. iScience. 2023; doi: 10.1016/j.isci.2023.106119.
9. Tian X, Li R, Fu W, Li Y, Wang X, Li M, et al.. Building a sequence map of the pig pan-genome from multiple de novo assemblies and Hi-C data. Sci China Life Sci. 2020; doi: 10.1007/s11427-019-9551-7.
10. Aganezov S, Yan SM, Soto DC, Kirsche M, Zarate S, Avdeyev P, et al.. A complete reference genome improves analysis of human genetic variation. Science. 2022; doi: 10.1126/science.abl3533.
11. Song J-M, Xie W-Z, Wang S, Guo Y-X, Koo D-H, Kudrna D, et al.. Two gap-free reference genomes and a global view of the centromere architecture in rice. Molecular Plant. 2021; doi: 10.1016/j.molp.2021.06.018.
12. Li K, Jiang W, Hui Y, Kong M, Feng L-Y, Gao L-Z, et al.. Gapless indica rice genome reveals synergistic contributions of active transposable elements and segmental duplications to rice genome evolution. Molecular Plant. 2021; doi: 10.1016/j.molp.2021.06.017.
13. Kille B, Balaji A, Sedlazeck FJ, Nute M, Treangen TJ. Multiple genome alignment in the telomere-to-telomere assembly era. Genome Biol. 2022; doi: 10.1186/s13059-022-02735-6.
14. Ardui S, Ameur A, Vermeesch JR, Hestand MS. Single molecule real-time (SMRT) sequencing comes of age: applications and utilities for medical diagnostics. Nucleic Acids Research. 2018; doi: 10.1093/nar/gky066.
15. Cheng H, Concepcion GT, Feng X, Zhang H, Li H. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat Methods. 2021; doi: 10.1038/s41592-020-01056-5.
16. Jain M, Koren S, Miga KH, Quick J, Rand AC, Sasani TA, et al.. Nanopore sequencing and assembly of a human genome with ultra-long reads. Nat Biotechnol. 2018; doi: 10.1038/nbt.4060.
17. Jain M, Olsen HE, Turner DJ, Stoddart D, Bulazel KV, Paten B, et al.. Linear assembly of a human centromere on the Y chromosome. Nat Biotechnol. 2018; doi: 10.1038/nbt.4109.
18. Vollger MR, Guitart X, Dishuck PC, Mercuri L, Harvey WT, Gershman A, et al.. Segmental duplications and their variation in a complete human genome. Science. 2022; doi: 10.1126/science.abj6965.
19. Rhie A, McCarthy SA, Fedrigo O, Damas J, Formenti G, Koren S, et al.. Towards complete and error-free genome assemblies of all vertebrate species. Nature. 2021; doi: 10.1038/s41586-021-03451-0.
20. Wu F, Chen Z, Zhang Z, Wang Z, Zhang Z, Wang Q, et al.. The Role of SOCS3 in Regulating Meat Quality in Jinhua Pigs. IJMS. 2023; doi: 10.3390/ijms241310593.
21. Wang Z, Zhang Z, Chen Z, Sun J, Cao C, Wu F, et al.. PHARP: a pig haplotype reference panel for genotype imputation. Sci Rep. 2022; doi: 10.1038/s41598-022-15851-x.
22. Marçais G, Kingsford C. A fast, lock-free approach for efficient parallel counting of occurrences of k -mers. Bioinformatics. 2011; doi: 10.1093/bioinformatics/btr011.
23. Rhie A, McCarthy SA, Fedrigo O, Damas J, Formenti G, Koren S, et al.. Towards complete and error-free genome assemblies of all vertebrate species. Nature. 2021; doi: 10.1038/s41586-021-03451-0.
24. Cheng H, Jarvis ED, Fedrigo O, Koepfli K-P, Urban L, Gemmell NJ, et al.. Haplotype-resolved assembly of diploid genomes without parental data. Nat Biotechnol. 2022; doi: 10.1038/s41587-022-01261-x.
25. Hu J, Wang Z, Sun Z, Hu B, Ayoola AO, Liang F, et al.. An efficient error correction and accurate assembly tool for noisy long reads. Bioinformatics; 2023 Mar.
26. Zhang X, Zhang S, Zhao Q, Ming R, Tang H. Assembly of allele-aware, chromosomal-scale autopolyploid genomes based on Hi-C data. Nat Plants. 2019; doi: 10.1038/s41477-019-0487-8.
27. Durand NC, Robinson JT, Shamim MS, Machol I, Mesirov JP, Lander ES, et al.. Juicebox Provides a Visualization System for Hi-C Contact Maps with Unlimited Zoom. Cell Systems. 2016; doi: 10.1016/j.cels.2015.07.012.
28. Manni M, Berkeley MR, Seppey M, Simão FA, Zdobnov EM. BUSCO Update: Novel and Streamlined Workflows along with Broader and Deeper Phylogenetic Coverage for Scoring of Eukaryotic, Prokaryotic, and Viral Genomes. Kelley J, editor. Molecular Biology and Evolution. 2021; doi: 10.1093/molbev/msab199.
29. Mikheenko A, Prjibelski A, Saveliev V, Antipov D, Gurevich A. Versatile genome assembly evaluation with QUAST-LG. Bioinformatics. 2018; doi: 10.1093/bioinformatics/bty266.
30. Rhie A, Walenz BP, Koren S, Phillippy AM. Merqury: reference-free quality, completeness, and phasing assessment for genome assemblies. Genome Biol. 2020; doi: 10.1186/s13059-020-02134-9.
31. Li H. Minimap2: pairwise alignment for nucleotide sequences. Birol I, editor. Bioinformatics. 2018; doi: 10.1093/bioinformatics/bty191.
32. Brown M, González De la Rosa PM, Mark B. A Telomere Identification Toolkit. Zenodo;
33. Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J. Repbase Update, a database of eukaryotic repetitive elements. Cytogenet Genome Res. 2005; doi: 10.1159/000084979.
34. Storer J, Hubley R, Rosen J, Wheeler TJ, Smit AF. The Dfam community resource of transposable element families, sequence models, and genome annotations. Mobile DNA. 2021; doi: 10.1186/s13100-020-00230-y.
35. Flynn JM, Hubley R, Goubert C, Rosen J, Clark AG, Feschotte C, et al.. RepeatModeler2 for automated genomic discovery of transposable element families. Proc Natl Acad Sci USA. 2020; doi: 10.1073/pnas.1921046117.
36. Tempel S. Using and Understanding RepeatMasker. In: Bigot Y, editor. Mobile Genetic Elements. Totowa, NJ: Humana Press;
37. Holt C, Yandell M. MAKER2: an annotation pipeline and genome-database management tool for second-generation genome projects. BMC Bioinformatics. 2011; doi: 10.1186/1471-2105-12-491.
38. Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol. 2019; doi: 10.1038/s41587-019-0201-4.
39. Pertea M, Pertea GM, Antonescu CM, Chang T-C, Mendell JT, Salzberg SL. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol. 2015; doi: 10.1038/nbt.3122.
40. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al.. BLAST+: architecture and applications. BMC Bioinformatics. 2009; doi: 10.1186/1471-2105-10-421.
41. Slater G, Birney E. Automated generation of heuristics for biological sequence comparison. BMC Bioinformatics. 2005; doi: 10.1186/1471-2105-6-31.
42. Korf I. Gene finding in novel genomes. BMC Bioinformatics. 2004; doi: 10.1186/1471-2105-5-59.
43. Stanke M, Keller O, Gunduz I, Hayes A, Waack S, Morgenstern B. AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Research. 2006; doi: 10.1093/nar/gkl200.
44. Altschul S. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research. 1997; doi: 10.1093/nar/25.17.3389.
45. Bairoch A, Apweiler R. The SWISS-PROT protein sequence data bank and its supplement TrEMBL in 1999. Nucleic Acids Research. 1999; doi: 10.1093/nar/27.1.49.
46. Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N, Apweiler R, et al.. InterProScan: protein domains identifier. Nucleic Acids Research. 2005; doi: 10.1093/nar/gki442.
47. Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Research. 2007; doi: 10.1093/nar/gkm321.
48. Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018; doi: 10.1093/bioinformatics/bty560.
49. Marçais G, Delcher AL, Phillippy AM, Coston R, Salzberg SL, Zimin A. MUMmer4: A fast and versatile genome alignment system. Darling AE, editor. PLoS Comput Biol. 2018; doi: 10.1371/journal.pcbi.1005944.
50. Heller D, Vingron M. SVIM-asm: structural variant detection from haploid and diploid genome assemblies. Robinson P, editor. Bioinformatics. 2021; doi: 10.1093/bioinformatics/btaa1034.
51. Bu D, Luo H, Huo P, Wang Z, Zhang S, He Z, et al.. KOBAS-i: intelligent prioritization and exploratory visualization of biological functions for gene enrichment analysis. Nucleic Acids Research. 2021; doi: 10.1093/nar/gkab447.
52. Shumate A, Salzberg SL. Liftoff: accurate mapping of gene annotations. Valencia A, editor. Bioinformatics. 2021; doi: 10.1093/bioinformatics/btaa1016.
53. Vasimuddin Md, Misra S, Li H, Aluru S. Efficient Architecture-Aware Acceleration of BWA-MEM for Multicore Systems. 2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS). Rio de Janeiro, Brazil: IEEE;
54. Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, et al.. The variant call format and VCFtools. Bioinformatics. 2011; doi: 10.1093/bioinformatics/btr330.
55. Szpiech ZA, Hernandez RD. selscan: An Efficient Multithreaded Program to Perform EHH-Based Scans for Positive Selection. Molecular Biology and Evolution. 2014; doi: 10.1093/molbev/msu211.
56. Skinner TM, Anderson JA, Haley CS, Archibald AL. Assessment of SULT1A1 , CYP2A6 and CYP2C18 as candidate genes for elevated backfat skatole levels in commercial and experimental pig populations. Animal Genetics. 2006; doi: 10.1111/j.1365-2052.2006.01502.x.
57. Mitka I, Ropka-Molik K, Tyra M. Functional Analysis of Genes Involved in Glycerolipids Biosynthesis (GPAT1 and GPAT2) in Pigs. Animals. 2019; doi: 10.3390/ani9060308.
58. Cuenca M, Puñet‐Ortiz J, Ruart M, Terhorst C, Engel P. Ly9 (SLAMF3) receptor differentially regulates iNKT cell development and activation in mice. Eur J Immunol. 2018; doi: 10.1002/eji.201746925.
59. Louten J, Mattson JD, Malinao M-C, Li Y, Emson C, Vega F, et al.. Biomarkers of Disease and Treatment in Murine and Cynomolgus Models of Chronic Asthma. Biomark Insights. 2012; doi: 10.4137/BMI.S9776.
60. Ladowski JM, Hara H, Cooper DKC. The Role of SLAs in Xenotransplantation. Transplantation. 2021; doi: 10.1097/TP.0000000000003303.
61. Aganezov S, Yan SM, Soto DC, Kirsche M, Zarate S, Avdeyev P, et al.. A complete reference genome improves analysis of human genetic variation. Science. 2022; doi: 10.1126/science.abl3533.
62. Li T-T, Xia T, Wu J-Q, Hong H, Sun Z-L, Wang M, et al.. De novo genome assembly depicts the immune genomic characteristics of cattle. Nat Commun. 2023; doi: 10.1038/s41467-023-42161-1.
63. Huang Z, Xu Z, Bai H, Huang Y, Kang N, Ding X, et al.. Evolutionary analysis of a complete chicken genome. Proc Natl Acad Sci USA. 2023; doi: 10.1073/pnas.2216641120.
64. You X, Fang Q, Chen C, Cao J, Fu S, Zhang T, et al.. A near complete genome assembly of the East Friesian sheep genome. Sci Data. 2024; doi: 10.1038/s41597-024-03581-w.
65. Li M, Tian S, Jin L, Zhou G, Li Y, Zhang Y, et al.. Genomic analyses identify distinct patterns of selection in domesticated pigs and Tibetan wild boars. Nat Genet. 2013; doi: 10.1038/ng.2811.
66. Kang M, Ahn B, Youk S, Jeon H, Soundarajan N, Cho E-S, et al.. Individual and population diversity of 20 representative olfactory receptor genes in pigs. Sci Rep. 2023; doi: 10.1038/s41598-023-45784-y.
67. Pieper R, Van Best N, Van Vorst K, Ebner F, Reissmann M, Hornef MW, et al.. Toward a porcine in vivo model to analyze the pathogenesis of TLR5-dependent enteropathies. Gut Microbes. 2020; doi: 10.1080/19490976.2020.1782163.
68. Guan P, Sung W-K. Structural variation detection using next-generation sequencing data. Methods. 2016; doi: 10.1016/j.ymeth.2016.01.020.
69. Abel HJ, Duncavage EJ. Detection of structural DNA variation from next generation sequencing data: a review of informatic approaches. Cancer Genetics. 2013; doi: 10.1016/j.cancergen.2013.11.002.
70. Cusenza VY, Bisagni A, Rinaldini M, Cattani C, Frazzi R. Copy Number Variation and Rearrangements Assessment in Cancer: Comparison of Droplet Digital PCR with the Current Approaches. IJMS. 2021; doi: 10.3390/ijms22094732.
71. Ho SS, Urban AE, Mills RE. Structural variation in the sequencing era. Nat Rev Genet. 2020; doi: 10.1038/s41576-019-0180-9.
72. Lunney JK, Ho C-S, Wysocki M, Smith DM. Molecular genetics of the swine major histocompatibility complex, the SLA complex. Developmental & Comparative Immunology. 2009; doi: 10.1016/j.dci.2008.07.002.