1.Froehlich HE, Runge CA, Gentry RR, Gaines SD, Halpern BS. Comparative terrestrial feed and land use of an aquaculture-dominant world. Proceedings of the National Academy of Sciences. 2018:201801692.
2.Béné C, Barange M, Subasinghe R, Pinstrup-Andersen P, Merino G, Hemre G-I, et al. Feeding 9 billion by 2050–Putting fish back on the menu. Food Security. 2015;7(2):261–74.
3.Nations FaAOotU. The State of World Fisheries and Aquaculture 2018 - Meeting the sustainable development goals. Rome; 2018.
4.Troell M, Naylor RL, Metian M, Beveridge M, Tyedmers PH, Folke C, et al. Does aquaculture add resilience to the global food system? Proceedings of the National Academy of Sciences. 2014;111(37):13257–63.
5.Engle CR, McNevin A, Racine P, Boyd CE, Paungkaew D, Viriyatum R, et al. Economics of Sustainable Intensification of Aquaculture: Evidence from Shrimp Farms in Vietnam and Thailand. Journal of the World Aquaculture Society. 2017;48(2):227–39.
6.Johnson K, Engle C, Wagner B. Comparative Economics of US Catfish Production Strategies: Evidence from a Cross‐sectional Survey. Journal of the World Aquaculture Society. 2014;45(3):279–89.
7.Bondad-Reantaso MG, Subasinghe RP, Arthur JR, Ogawa K, Chinabut S, Adlard R, et al. Disease and health management in Asian aquaculture. Veterinary parasitology. 2005;132(3):249–72.
8.Liu B, Liu Y, Sun G. Effects of stocking density on growth performance and welfare‐related physiological parameters of Atlantic salmon S almo salar L. in recirculating aquaculture system. Aquaculture Research. 2017;48(5):2133–44.
9.Calabrese S, Nilsen TO, Kolarevic J, Ebbesson LOE, Pedrosa C, Fivelstad S, et al. Stocking density limits for post-smolt Atlantic salmon (Salmo salar L.) with emphasis on production performance and welfare. Aquaculture. 2017;468:363–70.
10.Garcia F, Romera DM, Gozi KS, Onaka EM, Fonseca FS, Schalch SHC, et al. Stocking density of Nile tilapia in cages placed in a hydroelectric reservoir. Aquaculture. 2013;410:51–6.
11.Jones HAC, Noble C, Damsgård B, Pearce GP. Social network analysis of the behavioural interactions that influence the development of fin damage in Atlantic salmon parr (Salmo salar) held at different stocking densities. Applied Animal Behaviour Science. 2011;133(1–2):117–26.
12.Manley CB, Rakocinski CF, Lee PG, Blaylock RB. Stocking density effects on aggressive and cannibalistic behaviors in larval hatchery-reared spotted seatrout, Cynoscion nebulosus. Aquaculture. 2014;420:89–94.
13.Champneys T, Castaldo G, Consuegra S, Garcia de Leaniz C. Density-dependent changes in neophobia and stress-coping styles in the world’s oldest farmed fish. Royal Society open science. 2018;5(12):181473.
14.De las Heras V, Martos-Sitcha JA, Yúfera M, Mancera JM, Martínez-Rodríguez G. Influence of stocking density on growth, metabolism and stress of thick-lipped grey mullet (Chelon labrosus) juveniles. Aquaculture. 2015;448:29–37.
15.Laiz-Carrión R, Fuentes J, Redruello B, Guzmán JM, del Río MPM, Power D, et al. Expression of pituitary prolactin, growth hormone and somatolactin is modified in response to different stressors (salinity, crowding and food-deprivation) in gilthead sea bream Sparus auratus. General and comparative endocrinology. 2009;162(3):293–300.
16.Suárez MD, García-Gallego M, Trenzado CE, Guil-Guerrero JL, Furné M, Domezain A, et al. Influence of dietary lipids and culture density on rainbow trout (Oncorhynchus mykiss) flesh composition and quality parameter. Aquacultural engineering. 2014;63:16–24.
17.Jia R, Liu B-L, Feng W-R, Han C, Huang B, Lei J-L. Stress and immune responses in skin of turbot (Scophthalmus maximus) under different stocking densities. Fish & shellfish immunology. 2016;55:131–9.
18.Yarahmadi P, Miandare HK, Fayaz S, Caipang CMA. Increased stocking density causes changes in expression of selected stress-and immune-related genes, humoral innate immune parameters and stress responses of rainbow trout (Oncorhynchus mykiss). Fish & shellfish immunology. 2016;48:43–53.
19.Sun P, Bao P, Tang B. Transcriptome analysis and discovery of genes involved in immune pathways in large yellow croaker (Larimichthys crocea) under high stocking density stress. Fish & shellfish immunology. 2017;68:332–40.
20.Ellison AR, Webster TMU, Rey O, de Leaniz CG, Consuegra S, Orozco-terWengel P, et al. Transcriptomic response to parasite infection in Nile tilapia (Oreochromis niloticus) depends on rearing density. BMC genomics. 2018;19(1):723.
21.Stentiford GD, Sritunyalucksana K, Flegel TW, Williams BAP, Withyachumnarnkul B, Itsathitphaisarn O, et al. New paradigms to help solve the global aquaculture disease crisis. PLoS pathogens. 2017;13(2):e1006160.
22.Bank W. Reducing disease risks in aquaculture. 2014. Contract No.: #88257-GLB.
23.Field KA, Johnson JS, Lilley TM, Reeder SM, Rogers EJ, Behr MJ, et al. The white-nose syndrome transcriptome: activation of anti-fungal host responses in wing tissue of hibernating little brown myotis. PLoS pathogens. 2015;11(10):e1005168.
24.Ellison AR, Savage AE, DiRenzo GV, Langhammer P, Lips KR, Zamudio KR. Fighting a losing battle: vigorous immune response countered by pathogen suppression of host defenses in the chytridiomycosis-susceptible frog Atelopus zeteki. G3: Genes Genomes Genetics. 2014.
25.Robledo D, Gutiérrez AP, Barría A, Yáñez JM, Houston RD. Gene expression response to sea lice in Atlantic salmon skin: RNA sequencing comparison between resistant and susceptible animals. Frontiers in genetics. 2018;9:287.
26.Santos ME, Baldo L, Gu L, Boileau N, Musilova Z, Salzburger W. Comparative transcriptomics of anal fin pigmentation patterns in cichlid fishes. BMC genomics. 2016;17(1):712.
27.Marra NJ, Richards VP, Early A, Bogdanowicz SM, Bitar PDP, Stanhope MJ, et al. Comparative transcriptomics of elasmobranchs and teleosts highlight important processes in adaptive immunity and regional endothermy. BMC genomics. 2017;18(1):87.
28.Ellison AR, Tunstall T, DiRenzo GV, Hughey MC, Rebollar EA, Belden LK, et al. More than skin deep: functional genomic basis for resistance to amphibian chytridiomycosis. Genome biology and evolution. 2015;7(1):286–98.
29.Valenzuela-Muñoz V, Boltaña S, Gallardo-Escárate C. Comparative immunity of Salmo salar and Oncorhynchus kisutch during infestation with the sea louse Caligus rogercresseyi: An enrichment transcriptome analysis. Fish & shellfish immunology. 2016;59:276–87.
30.Adams CE, Turnbull JF, Bell A, Bron JE, Huntingford FA. Multiple determinants of welfare in farmed fish: stocking density, disturbance, and aggression in Atlantic salmon (Salmo salar). Canadian journal of fisheries and aquatic sciences. 2007;64(2):336–44.
31.Turnbull J, Bell A, Adams C, Bron J, Huntingford F. Stocking density and welfare of cage farmed Atlantic salmon: application of a multivariate analysis. Aquaculture. 2005;243(1):121–32.
32.Evans JJ, Pasnik DJ, Horley P, Kraeer K, Klesius PH. Aggression and mortality among Nile tilapia (Oreochromis niloticus) maintained in the laboratory at different densities. Res J Anim Sci. 2008;2(2):57–64.
33.Liu B, Liu Y, Wang X. The effect of stocking density on growth and seven physiological parameters with assessment of their potential as stress response indicators for the Atlantic salmon (Salmo salar). Marine and freshwater behaviour and physiology. 2015;48(3):177–92.
34.Qiang J, He J, Yang H, Xu P, Habte-Tsion HM, Ma XY, et al. The changes in cortisol and expression of immune genes of GIFT tilapia Oreochromis niloticus (L.) at different rearing densities under Streptococcus iniae infection. Aquaculture international. 2016;24(5):1365–78.
35.Ridha MT. Comparative study of growth performance of three strains of Nile tilapia, Oreochromis niloticus, L. at two stocking densities. Aquaculture Research. 2006;37(2):172–9.
36.Mazur CF, Iwama GK. Handling and crowding stress reduces number of plaque‐forming cells in Atlantic salmon. Journal of Aquatic Animal Health. 1993;5(2):98–101.
37.Van Den Berg AH, McLaggan D, Diéguez-Uribeondo J, Van West P. The impact of the water moulds Saprolegnia diclina and Saprolegnia parasitica on natural ecosystems and the aquaculture industry. Fungal Biology Reviews. 2013;27(2):33–42.
38.Saad TT, Atallah ST, El-Bana SA. Fish diseases and its economic effect on Egyptian fish farms. Journal of Agriculture and Food Technology 2014;4(5):1–6.
39.Chauhan R. Fungal attack on Tilapia mossambicus in culture pond, leading to mass mortality of fishes. Int J Phram Sci Rev Res. 2014;7.
40.Hughes LC, Ortí G, Huang Y, Sun Y, Baldwin CC, Thompson AW, et al. Comprehensive phylogeny of ray-finned fishes (Actinopterygii) based on transcriptomic and genomic data. Proceedings of the National Academy of Sciences. 2018:201719358.
41.Langfelder P, Luo R, Oldham MC, Horvath S. Is my network module preserved and reproducible? PLoS computational biology. 2011;7(1):e1001057.
42.North BP, Turnbull JF, Ellis T, Porter MJ, Migaud H, Bron J, et al. The impact of stocking density on the welfare of rainbow trout (Oncorhynchus mykiss). Aquaculture. 2006;255(1–4):466–79.
43.Ellison AR, Uren-Webster TM, Rey O, de Leaniz CG, Consuegra S, Orozco-terWengel P, et al. Transcriptomic response to parasite infection in Nile tilapia (Oreochromis niloticus) depends on rearing density. BMC genomics. 2018;19(1):723.
44.RSPCA. RSPCA welfare standards for farmed Atlantic salmon. Horsham, UK; 2018. Contract No.: 978–0–901098–14–6.
45.Martinez M, Calvo-Torrent A, Herbert J. Mapping brain response to social stress in rodents with c-fos expression: a review. Stress. 2002;5(1):3–13.
46.Liu S, Gao G, Palti Y, Cleveland BM, Weber GM, Rexroad Iii CE. RNA-seq analysis of early hepatic response to handling and confinement stress in rainbow trout. Plos one. 2014;9(2):e88492.
47.Salierno JD, Snyder NS, Murphy AZ, Poli M, Hall S, Baden D, et al. Harmful algal bloom toxins alter c-Fos protein expression in the brain of killifish, Fundulus heteroclitus. Aquatic toxicology. 2006;78(4):350–7.
48.Iwama GK, Afonso LOB, Todgham A, Ackerman P, Nakano K. Are hsps suitable for indicating stressed states in fish? Journal of Experimental Biology. 2004;207(1):15–9.
49.Zlatković J, Bernardi RE, Filipović D. Protective effect of Hsp70i against chronic social isolation stress in the rat hippocampus. Journal of Neural Transmission. 2014;121(1):3–14.
50.Roberts LJ, Taylor J, de Leaniz CG. Environmental enrichment reduces maladaptive risk-taking behavior in salmon reared for conservation. Biological Conservation. 2011;144(7):1972–9.
51.Roberts LJ, Taylor J, Gough PJ, Forman DW, Garcia de Leaniz C. Silver spoons in the rough: can environmental enrichment improve survival of hatchery Atlantic salmon Salmo salar in the wild? Journal of Fish Biology. 2014;85(6):1972–91.
52.Stringwell R, Lock A, Stutchbury CJ, Baggett E, Taylor J, Gough PJ, et al. Maladaptation and phenotypic mismatch in hatchery‐reared Atlantic salmon Salmo salar released in the wild. Journal of Fish Biology. 2014;85(6):1927–45.
53.Belmonte R, Wang T, Duncan GJ, Skaar I, Mélida H, Bulone V, et al. Role of pathogen-derived cell wall carbohydrates and prostaglandin E2 in immune response and suppression of fish immunity by the oomycete Saprolegnia parasitica. Infection and immunity. 2014;82(11):4518–29.
54.de Bruijn I, Belmonte R, Anderson VL, Saraiva M, Wang T, van West P, et al. Immune gene expression in trout cell lines infected with the fish pathogenic oomycete Saprolegnia parasitica. Developmental & Comparative Immunology. 2012;38(1):44–54.
55.Kales SC, DeWitte-Orr SJ, Bols NC, Dixon B. Response of the rainbow trout monocyte/macrophage cell line, RTS11 to the water molds Achlya and Saprolegnia. Molecular immunology. 2007;44(9):2303–14.
56.Dumbell R, Matveeva O, Oster H. Circadian Clocks, Stress, and Immunity. Frontiers in endocrinology. 2016;7.
57.Du LY, Darroch H, Keerthisinghe P, Ashimbayeva E, Astin JW, Crosier KE, et al. The innate immune cell response to bacterial infection in larval zebrafish is light-regulated. Scientific reports. 2017;7(1):12657.
58.Guerra-Santos B, López-Olmeda JF, Pereira DSP, Ruiz CE, Sánchez-Vázquez FJ, Esteban MÁ, et al. Daily rhythms after vaccination on specific and non-specific responses in Nile tilapia (Oreochromis niloticus). Chronobiology international. 2018;35(9):1305–18.
59.Reite OB, Evensen Ø. Inflammatory cells of teleostean fish: a review focusing on mast cells/eosinophilic granule cells and rodlet cells. Fish & shellfish immunology. 2006;20(2):192–208.
60.Sfacteria A, Brines M, Blank U. The mast cell plays a central role in the immune system of teleost fish. Molecular immunology. 2015;63(1):3–8.
61.van West P. Saprolegnia parasitica, an oomycete pathogen with a fishy appetite: new challenges for an old problem. Mycologist. 2006;20(3):99–104.
62.Tort L. Stress and immune modulation in fish. Developmental & Comparative Immunology. 2011;35(12):1366–75.
63.Small BC, Bilodeau AL. Effects of cortisol and stress on channel catfish (Ictalurus punctatus) pathogen susceptibility and lysozyme activity following exposure to Edwardsiella ictaluri. General and comparative endocrinology. 2005;142(1–2):256–62.
64.Downer EJ, Johnston DGW, Lynch MA. Differential role of Dok1 and Dok2 in TLR2-induced inflammatory signaling in glia. Molecular and Cellular Neuroscience. 2013;56:148–58.
65.Celis‐Gutierrez J, Boyron M, Walzer T, Pandolfi PP, Jonjić S, Olive D, et al. Dok1 and Dok2 proteins regulate natural killer cell development and function. The EMBO journal. 2014;33(17):1928–40.
66.Saluja R, Metz M, Maurer M. Role and relevance of mast cells in fungal infections. Frontiers in immunology. 2012;3:146.
67.Schraml BU, Hildner K, Ise W, Lee W-L, Smith WAE, Solomon B, et al. The AP–1 transcription factor Batf controls T H 17 differentiation. Nature. 2009;460(7253):405.
68.Anderson AC, Joller N, Kuchroo VK. Lag–3, Tim–3, and TIGIT: co-inhibitory receptors with specialized functions in immune regulation. Immunity. 2016;44(5):989–1004.
69.Butler NS, Moebius J, Pewe LL, Traore B, Doumbo OK, Tygrett LT, et al. Therapeutic blockade of PD-L1 and LAG–3 rapidly clears established blood-stage Plasmodium infection. Nature immunology. 2012;13(2):188.
70.Umasuthan N, Revathy KS, Whang I, Kim E, Oh M-J, Jung S-J, et al. Genomic identification and molecular characterization of a non-mammalian TNFAIP8L2 gene from Oplegnathus fasciatus. Gene. 2014;542(1):52–63.
71.Li T, Wang W, Gong S, Sun H, Zhang H, Yang A-G, et al. Genome-wide analysis reveals TNFAIP8L2 as an immune checkpoint regulator of inflammation and metabolism. Molecular immunology. 2018;99:154–62.
72.Khader SA, Gaffen SL, Kolls JK. Th17 cells at the crossroads of innate and adaptive immunity against infectious diseases at the mucosa. Mucosal immunology. 2009;2(5):403.
73.Lin Y, Slight SR, Khader SA, editors. Th17 cytokines and vaccine-induced immunity2010: Springer.
74.Zhang H, Fei C, Wu H, Yang M, Liu Q, Wang Q, et al. Transcriptome profiling reveals Th17-like immune responses induced in zebrafish bath-vaccinated with a live attenuated Vibrio anguillarum. PloS one. 2013;8(9):e73871.
75.Stewart A, Jackson J, Barber I, Eizaguirre C, Paterson R, van West P, et al. Hook, Line and Infection: A Guide to Culturing Parasites, Establishing Infections and Assessing Immune Responses in the Three-Spined Stickleback. Advances in parasitology. 2017;98:39.
76.Auperin B, Baroiller J-F, Ricordel M-J, Fostier A, Prunet P. Effect of confinement stress on circulating levels of growth hormone and two prolactins in freshwater-adapted tilapia (Oreochromis niloticus). General and comparative endocrinology. 1997;108(1):35–44.
77.Hoshiai G. Studies on saprolegniasis in cultured coho salmon, Oncorhynchus kisutch Walbaum. Studies on saprolegniasis in cultured coho salmon, Oncorhynchus kisutch Walbaum. 1990(39):154–7.
78.Secombes CJ, Wang T. The innate and adaptive immune system of fish. Infectious disease in aquaculture: Elsevier; 2012. p. 3–68.
79.Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–20.
80.Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nature methods. 2015;12(4):357–60.
81.Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC bioinformatics. 2011;12(1):323.
82.Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic acids research. 2015;43(7):e47-e.
83.Oliveros JC. VENNY. An interactive tool for comparing lists with Venn Diagrams. http://bioinfogp.cnb.csic.es/tools/venny/index.html2007.
84.Alexa A, Rahnenfuhrer J. topGO: Enrichment Analysis for Gene Ontology. version 2.34.0 ed: R package; 2018.
85.Moreno-Hagelsieb G, Latimer K. Choosing BLAST options for better detection of orthologs as reciprocal best hits. Bioinformatics. 2007;24(3):319–24.
86.Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC bioinformatics. 2008;9(1):559.